首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The quantum cascade laser is a new light source based on resonant tunnelling and optical transitions between quantised conduction band states. In these semiconductor devices the principles of operation arise from the quantum engineering of electronic energy levels and tailoring of their wavefunctions. In recent years the performance of these devices has improved markedly and this semiconductor technology is now an attractive choice for the fabrication of mid-far infrared lasers in a very wide spectral range (3–80 μm). At present, quantum cascade lasers are capable of continuous-wave room temperature operation and can deliver 200–300 mW of average power (at λ∼9 μm) operating on a Peltier cooler. To cite this article: C. Sirtori, J. Nagle, C. R. Physique 4 (2003).  相似文献   

2.
Laser diodes emitting at room temperature in continuous wave regime (CW) in the mid-infrared (2–5 μm spectral domain) are needed for applications such as high sensitivity gas analysis by tunable diode laser absorption spectroscopy (TDLAS) and environmental monitoring. Such semiconductor devices do not exist today, with the exception of type-I GaInAsSb/AlGaAsSb quantum well laser diodes which show excellent room temperature performance, but only in the 2.0–2.6 μm wavelength range. Beyond 2.6 μm, type-II GaInAsSb/GaSb QW lasers, type-III ‘W’ InAs/GaInSb lasers, and interband quantum cascade lasers employing the InAs/Ga(In)Sb/AlSb system, all based on GaSb substrate, are competitive technologies to reach the goal of room temperature CW operation. These different technologies are discussed in this paper. To cite this article: A. Joullié, P. Christol, C. R. Physique 4 (2003).  相似文献   

3.
We report some electric field controlled photorefractive higher-order diffraction phenomena of a paraelectric phase potassium lithium tantalate niobate crystal doped with iron. In experiments, a p-polarized semiconductor laser (532 nm) was used to record grating at a small incident angle. Higher-order diffraction images were observed when the signal beam was focused behind and in front of the crystal. Then the higher-order diffraction images were reconstructed by a p-polarized He–Ne laser (632.8 nm) in the direction perpendicular to the surface. The higher-order diffraction images could be controlled by the external electric field. A theory about the higher-order diffraction images of the K and 2K grating is developed. The results show that the even order diffraction images of the K grating and the odd order diffraction of the 2K grating overlap each other. The odd order diffraction images of the K grating are diffracted in unattached direction. The electric field controlled higher-order diffraction image provides a useful method for optical information processing.  相似文献   

4.
卫栋  陈海霞  熊德智  张靖 《物理学报》2006,55(12):6342-6346
40K-87Rb原子冷却的半导体激光系统提出了一种实验方案,并进行了初步实验.采用三台外腔光栅反馈半导体激光器(ECDL)、四台注入锁定从激光器和一台半导体激光放大器组成激光系统.三台ECDL通过声光调制器产生四束光,分别作为40K和87Rb原子的冷却光和再抽运光,四束不同频率成分的激光分别注入锁定四台从激光器,然后Rb 冷却光、K冷却光和K再抽运光再同时注入半导体激光放大器进行放大.该装置可同时产生冷却40K和87Rb原子的冷却光和再抽运光,结构紧凑、工作稳定. 关键词: 简并费米气体 激光器系统 外腔光栅反馈半导体激光器 半导体激光放大器  相似文献   

5.
In this paper, theoretical analysis of antireflection complex gain coupled distributed feedback lasers (CGC-DFB) with tapered grating structure has been presented. Two types of gratings, convex and concave tapered grating with longitudinal variable depth, in active layer have been proposed. Evaluation of flatness parameter variation above threshold condition shows that concave tapered grating improves the stability of CGC-DFB laser against spatial hole burning (SHB) effect. The dependencies of output power, side mode suppression ratio (SMSR) and oscillation wavelength of CGC-DFB laser on convex and concave grating parameters have been studied. Both convex and concave tapered grating CGC-DFB structures have higher output power than conventional CGC-DFB lasers with uniform grating. It is found that, concave tapered grating structure with parameters p 0?=?15?nm and a 0?=?0.7 nm has minimum flatness parameter, stable lasing wavelength and flat SMSR profile as a function of current. Theoretical calculation model is based on the numerical solution of coupled wave equations and carrier rate equation by using transfer matrix method. In numerical calculation SHB effect has been assumed.  相似文献   

6.
Five dimethylindium complexes of type Me2InL [L = N-(4-methoxy)benzylidenethiobenzahydrazonato (1), N-(3,4-dimethoxy)benzylidenethiobenzahydrazonato (2), N-(4-N,N-dimethylamino)benzylidenethiobenzahydrazonato (3), N-(2-naphthyl)methylene thiobenzahydrazonato (4) and N-(9-anthryl)methylenethiobenzahydrazonato (5)] have been synthesized by reaction of trimethylindium with appropriate N-arylmethylenethiobenzahydrozones. The complexes obtained have been characterized by elemental analysis, 1H NMR, IR and mass spectroscopy. Compounds 15 emit blue colors at λmax = 432–479 nm when irradiated by UV light. The electroluminescent (EL) properties of 15 were examined by fabricating EL devices using 15 as emitter, respectively. The EL bands are located in the green region (513–578 nm).  相似文献   

7.
We report on two-color, two-photon polarization spectroscopy in a room-temperature rubidium vapor. We use two separate lasers, a strong pump at 780 nm to induce an anisotropy in the atomic polarization and a weak probe at 776 nm to interrogate this anisotropy. The lasers are resonant with the 52S1/2  52P3/2 and 52P3/2  52D5/2 transitions in rubidium, respectively. Finally, we have used our polarization spectroscopy signal as an error signal to lock the 776 nm laser. This modulation-free locking scheme allows us to detune the lock point of the second laser by adjusting the detuning of the laser used for the first transition.  相似文献   

8.
Aqueous glutathione (GSH)-capped CdTe/ZnS QDs with the diameter of 3–4 nm were synthesized. The fluorescence of CdTe/ZnS QDs at 577 nm was quenched in the presence of rifampicin (Rfp), with excitation wavelength at 350 nm. The mechanism of the interaction of CdTe/ZnS QDs with Rfp was investigated. Under the optimal conditions, the calibration plot of ln(F0/F) was linear in the range 0.83–56 μg mL?1 with concentration of Rfp, and the detection limit was 0.25 μg mL?1. The proposed method was successfully applied to the determination of Rfp in its commercial capsules, and satisfactory results were obtained. The recovery of the method was in the range 98.6–103.2%.  相似文献   

9.
In this paper, a theoretical model was established to study speckle reduction using the wavelength blending technique with multiple lasers for the first time. An optimized power ratio of two lasers was then obtained using the theoretical model. A diode pumped solid state (DPSS) laser at 532 nm and a semiconductor laser diode (LD) at 520 nm were used to verify the simulated results. A speckle reduction system which utilizes wavelength blending was also proposed and demonstrated. Using wavelength blending, this system has a lower speckle as compared with one in which only one wavelength is used, and an improved green primary color (with respect to the Rec. 2020 standard) as compared with the one that only semiconductor LD is employed.  相似文献   

10.
High energy picosecond pulse generation from a two contact tapered 5 quantum well (QW) InGaAlAs/InP diode laser (1550 nm) is investigated using a passive Q-switching technique. Single peak pulses with pulse energies as high as 500 pJ and durations of typically hundreds of picoseconds are obtained from the device by applying reverse bias voltages in the range of 0 V to ?18 V to the absorber section of the device. It is also demonstrated that more symmetrical Q-switched pulses are obtained by reducing the duration of electrical pulses applied to the gain section of the laser. Such an improvement is attributed to the reduced time of the population inversion in the gain section due to shorter electrical pulse. We also show comparatively the dependence of optical spectra on the reverse bias voltage for diode lasers emitting at 1550 nm and 1350 nm, and demonstrate that better spectral output is obtained from AlGaInAs lasers emitting at a wavelength of 1550 nm.  相似文献   

11.
Continuous wave power of more than 400 mW at 488 nm has been generated by frequency doubling of 2.45 W at 976 nm obtained from a distributed Bragg reflector tapered diode laser. This results in a wavelength conversion efficiency of 16.5% and an electrical-to-optical efficiency of more than 4.5%. We used a 50 mm long periodically poled MgO:LiNbO3 bulk crystal in single-pass configuration for the second harmonic generation. This is to the author’s knowledge the highest output power and the highest wavelength conversion efficiency at 488 nm generated by a monolithic semiconductor laser device in single pass configuration with a bulk crystal. A deviation from the quadratic dependency of the frequency doubling is explained by the decrease of the beam quality of the fundamental wave.  相似文献   

12.
Surprisingly, several experiments have reported that normal-incidence light absorption due to inter-conduction-subband transitions in direct-gap semiconductor quantum wells is as strong as in-plane-incidence absorption. In contrast to other models, a recent theoretical study claimed that a 14-bandk  pmodel including multiband coupling terms due toremote-conduction bandsis able to explain the experimental results. In this work, a concise formulation extends the model beyond 14 bands. Nevertheless, after rederiving the optical transition matrix elements, this analysis clearly shows that the oscillator strength for the in-plane polarized optical intersubband transition due to the multiband coupling effects is much smaller than the oscillator strength for the normal-to-plane polarized optical intersubband transition. These results indicate that the multiband coupling effects due to remote-conduction bands cannot cause a sufficient in-plane polarized optical intersubband transition to produce the observed normal-incidence absorption in the desirablen-type III–V compound semiconductor quantum wells.  相似文献   

13.
We report picosecond pulse generation with high peak power in the range of 3.6 W from monolithic passively mode-locked tapered quantum-dot laser diodes, exhibiting low divergence and good beam quality. These results were achieved using a gain-guided tapered laser geometry. The generation of picosecond pulses with high average power up to 209 mW directly from such tapered lasers is also demonstrated, corresponding to 14.2 pJ pulse energy (14.65 GHz repetition rate). A comparison between the mode-locking performance of these tapered lasers incorporating either five or ten layers of InAs/GaAs self-organized quantum dots in their active layer is also presented.  相似文献   

14.
Large-area high-resolution displays, using a flying-spot to create the picture, require light sources in the red, green and blue wavelength range with a high optical output power and nearly diffraction limited beam. In this paper we present experimental results of high-brightness distributed Bragg reflector tapered diode lasers at 106x nm that can be used for single-pass second harmonic generation into the green. Based on these lasers we developed compact (2.5 cm3) green laser modules with an output power of 1W at 53x nm and an electro-optical conversion efficiency of about 5%. The output power stability is better than 2% and the wavelength stability is ±10 pm. The excellent beam quality M ?? 2 < 2 of the green light allows operation in flying spot application systems. Furthermore, we estimate that our concept allows power scaling up to 2W by using nonlinear planar waveguide crystals and into the multi-watt level by spectral beam combining.  相似文献   

15.
High-efficiency, high-speed, tapered-oxide-apertured vertical-cavity surface-emitting lasers (VCSELs) emitting at 980 nm have been demonstrated. By carefully engineering the tapered oxide aperture, the mode volume can be greatly reduced without adding much optical scattering loss for the device sizes of interest. Consequently, these devices can achieve higher bandwidth at lower current and power dissipation. In addition, the parasitics are reduced by implementing deep oxidation layers and an improved p-doping scheme in the top mirror. Our devices show modulation bandwidth exceeding 20 GHz, a record for 980 nm VCSELs. Moreover, 35 Gb/s operation has been achieved at only 10 mW power dissipation. This corresponds to a data-rate/power-dissipation ratio of 3.5 Gbps/mW. Most importantly, our device structure is compatible with existing manufacturing processes and can be easily manufactured in large volume making them attractive for optical interconnects.  相似文献   

16.
具有高功率及高亮度激光特性的锥形半导体激光器在激光加工、自由空间通信、医疗等领域具有广泛的应用前景.本文基于广角差分光束传播法(WA-FD-BPM),对980 nm锥形半导体激光器进行了仿真模拟,详细分析了不同结构参数(脊形区刻蚀深度、锥形角度、不同脊形区/锥形区长度比、锥形区刻蚀深度、前腔面反射率)对器件光束质量和P...  相似文献   

17.
We have investigated the use of several different types of lasers for scribing of the polycrystalline materials used for thin-film solar cells: CdTe, CuInGaSe2 (CIGS), ZnO, SnO2, Mo, Al, and Au. The lasers included four different neodymium–yttrium–aluminum garnet (Nd:YAG) (both 1064 and 532 nm wavelengths), a Cu vapor (511/578 nm), an XeCl excimer (308 nm), and a KrF excimer (248 nm). Pulse durations ranged from 0.1 to 250 ns. We found that the fundamental and frequency-doubled wavelengths of the Nd:YAG systems work well for almost all of the above materials except for the transparent conductor ZnO. The diode-laser-pumped Nd:YAG was particularly convenient to use. For ZnO the uv wavelengths of the two excimer lasers produced good results. Pulse duration was found generally not to be critical except for the case of CIGS on Mo where longer pulse durations (≥250 ns) are advantageous. The frequently observed problem of ridge formation along the edges of scribe lines in the semiconductor films can be eliminated by control of intensity gradients at the film through adjustment of the focus conditions.  相似文献   

18.
In this paper we present optical and thermo-optical characterization results of integrated filters based on micro-ring resonators fabricated with a couple of polymers “PVCI/PMATRIFE”. Their high index contrast (Δn~0.15 at the wavelength of 1550 nm) allows to make small size waveguides with cross sections of 1.5×1.5 μm². The study of the impact of different gaps on the extinction ratio and FWHM (full width at half maximum) of filters leads to a better design. First experiments of thermal tunability of the microring filter using a thermo-electric cooler (TEC) are also reported giving a 5 nm shift of the dropped wavelength for a temperature change of 40 K. The fabrication of gold electrodes on microrings is reported and the electrical power required for the tuning of the drop wavelength of 0.0055 nm/1 mW show that with an optimized electrode design the consumption will be low.  相似文献   

19.
This paper reports a theoretical design of chirped mirrors in 1.3-μm double-section semiconductor lasers to achieve high reflectivity and dispersion compensation over a broad bandwidth. Analytic expressions for reflectivity, group delay and group delay dispersion are derived. We use for the first time chirped air/semiconductor layer pairs as mirrors for higher-order dispersion compensation in semiconductor lasers. Our optimised calculations demonstrate that the broad-band mirrors designed consist of a total of only 12 air/semiconductor layers and achieve a reflectivity higher than 99.8%, a smooth group delay and almost stable dispersion in the laser cavity over a 100-nm bandwidth. Due to a high index contrast of both types of the layers, n l = 1, n h~ 3.5, a high-reflectivity bandwidth of > 700 nm is obtained in 1.3-μm semiconductor lasers. We also compare our results with that of a commercial simulation program and show a good agreement between them. As a conclusion, we assume from the theoretical results that air/semiconductor layer pairs with varying thicknesses used at one end of double-section semiconductor lasers can lead to femtosecond optical pulse generation using mode-locking techniques. An erratum to this article can be found at .  相似文献   

20.
Knowledge of the dopant distribution in nanodevices is critical for optimising their electrical performances. We demonstrate with a scanning transmission electron microscope the direct detection and two-dimensional distribution maps of arsenic dopant in semiconductor silicon devices using electron energy-loss spectroscopy. The technique has been applied to 40–45 nm high density static random access memory and to npn BiCMOS transistors. The quantitative maps have been compared with secondary ion mass spectrometry analysis and show a good agreement. The sensitivity using this approach is in the low 1019 cm?3 range with a spatial resolution of about 2 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号