首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DFT calculations are used to calculate the binding energies of the second electron of the closo‐borane B12H122‐ and B12(CN)122‐.  相似文献   

2.
A novel complex [Cu(NnpPy)2(HlTCB)(H1O)]·2H2O (NITpPy = 2‐(pyrid‐4′‐yl)‐4,4,5,5‐tetramethyl‐1, 3‐dioxoimidazoline; H2TCB = 1, 5‐dicarboxybenzene carboxylic‐2, 4‐diacid) has been synthesized and characterized by X‐ray crystallography analysis. The crystal structure consists of infinite chains of Cu‐(NITpPy)2(H2O) units linked by H2TCB ligands. The complex crystallizes in triclinic system with space group PI. Crystal data: a = 1.0594(2) nm, b = 1.3830(3) nm, c = 1.5551(3) nm, a = 67.75(3)°, β = 89.83(3)°, γ = 70.54(3)°. The variable magnetic susceptibility studies lead to magnetic coupling constant values of J1= ?11.18 cm‐1 (Cu—Rad) and J2 = ?4.06 cm?1 (Cu—Cu).  相似文献   

3.
DFT‐based calculations reveal that the global minimum of IrB12 is a C3v symmetric bowl‐like structure in which the Ir atom is located on the concave side of the bowl similar to its lighter congeners, CoB12 and RhB12.  相似文献   

4.
The electronic structures of “Ti9‐nFe2+nRu18B8” (n = 0, 0.5, 1, 2, 3), including the recently synthesized compounds Ti9‐nFe2+nRu18B8 (n = 1, 2), are determined by TB‐LMTO‐ASA computations.  相似文献   

5.
Four non‐cyanogenic cyanoglucosides including hydranitrilosides A1, A2, B1, and B2 ( 1 – 4 , resp.), together with a new phenolic glucoside, 3‐hydroxy‐4‐methoxybenzoic acid 3‐Oβ‐D ‐glucopyranoside ( 5 ), were isolated from the leaves of Hydrangea macrophylla. Their structures were determined on the basis of chemical and spectral evidence.  相似文献   

6.
A series of tridentate P, N, P ligands comprising a central pyridine unit and two pendent diarylphosphane moieties (2, 6‐bis(CH2PAr2)pyridine; Ar = phenyl ( 1 ), 2‐methylphenyl ( 2 ), 2, 4, 6‐trimethylphenyl ( 3 )) as well as the corresponding iron ( 1‐FeCl2 , 2‐FeCl2 , 3‐FeCl2 ) and cobalt ( 1‐CoCl2 , 2‐CoCl2 , 3‐CoCl2 ) complexes were synthesized and characterized. An X‐ray structure analysis of 2‐CoCl2 and 3‐CoCl2 exhibited a trigonal‐bipyramidal coordination geometry at the metal center, the two chlorine atoms and the nitrogen occupying the equatorial and the phosphane units the apical positions. IR analysis indicated, that in all complexes the pyridine unit is coordinated to the metal center. The cobalt compounds were applied as catalyst precursors for the polymerization of ethene after activation with MAO.  相似文献   

7.
The electroreduction of the halofluoromethanes CF3Br, CF2Br2 and CF2BrCl has been studied in high‐pressure stainless steel autoclaves at different cathodes [Pt, steel (V2A, V4A), glassy carbon (GC)] and in various solvent‐supporting electrolyte systems (SSE), e.g. DMF/[Bu4N]Br, NMP/[Bu4N]BF4 etc. The reduction potentials for CF3Br increase from Pt (–1.6 V) < V2A (–1.8 V) < GC (–2.1 V) and are lower for CF2Br2 and CF2BrCl suggesting a reductive cleavage of C‐X bonds as the first step. CF2Br2 and CF2BrCl show a two‐step reduction in accord with the C–X bond energies (C–F > C–Cl > C–Br) and the “Perfluoro‐effect”. The electrolysis of CF3Br in different SSE‐systems with sacrificial zinc or cadmium anodes has been reinvestigated with our experimental set‐up to elucidate the influence of the experimental conditions on the type and ratio of the products. The observed products CF3MBr·42L and (CF3)2M·42L (M = Zn, Cd; L = DMF or AN) are the same as in the previous investigations, but are obtained in different ratios, as a rule caused by a parallel chemical corrosion of the respective anodes. By using aluminium as sacrificial anode no CF3Al compounds are formed. The CF3 species generated by electroreduction of CF3Br react with the solvents via hydrogen abstraction and formation of CF3H. The current yield with respect to the dissolution of the Al anode reaches 120 % indicating a considerable chemical corrosion in addition to the anodic oxidation. This result enabled a one‐pot trifluoromethylation reaction of NMP as organic carbonyl substrate and solvent with CF3Br and aluminium powder (ratio 3 : 2) at higher temperatures (> 70 °C). The complete reaction of CF3Br to give CF3H and 1‐methyl‐2‐trifluoromethyl‐4,5‐dihydropyrrol allowed the isolation of the latter by vacuum condensation and distillation in 45 % yield, rel. to the CF3Br used. Gallium and indium were also applied as sacrificial anodes in combination with CF3Br as substrate. In both cases, anodic current yields of about 280 % indicated an extreme chemical corrosion together with cathodic metal depositions corresponding to the cathodic current yield. These deposits – in contrast to those of Zn and Cd – do not react with CF3Br in Grignard‐type conversions to CF3Ga and CF3In compounds. So, the observed products (CF3)nMBr3–n·L (M = Ga, In; n 1‐3; L = DMF, NMP) are obviously formed by chemical corrosion of the electro‐activated anodes. Finally, electrochemical and chemical trifluoromethylations were successfully carried out, using R3SiCl (R = Me, Vi, Ph), Me3M′Cl (M′ = Ge, Sn) and aluminium anodes or Al‐powder. The products were characterized either after isolation or in the product solutions by NMR‐spectroscopic investigations.  相似文献   

8.
A synthetic procedure based on the 1,3‐dipolar cycloaddition reactions of nitrile oxides and ethynylferrocene derived from ferrocene has been developed to synthesize new ferrocenyl‐isoxazole derivatives. The stable solids were thoroughly characterized by 1H NMR, FT‐IR, and mass spectroscopy. The structure of (η5‐C5H5) Fe (η5‐C5H4) C3HNOC6H4CH3 was determined by single‐crystal X‐ray diffraction. The electrochemical behaviors of the synthesized ferrocenyl‐isoxazole derivatives were also studied. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
The complexes [Co(L1)(mpy)] ( 1 ), [Ni(L1)(mpy)] ( 2 ), [Co(L1)(tbpy)] · 2H2O ( 3 ), [Ni2(L1)2(tbpy)2] · 5H2O ( 4 ), [Mn2(L1)2(tbpy)2] · 3H2O ( 5 ), [Mn(L1)(biim‐3)] ( 6 ), [Ni2(L1)2(btb)2(H2O)] · 2H2O ( 7 ), [Cu(L2)(mpy)] · 7H2O ( 8 ), [Co(L2)(tbpy)(H2O)] ( 9 ), [Ni(L2)(tbpy)(H2O)] · H2O ( 10 ), [Cu(L2)(bib)] · 2H2O ( 11 ), and [Cu(L2)(btb)] · 2H2O ( 12 ) [H2L1 = (3‐carboxyl‐phenyl)‐(4‐(2′‐carboxyl‐phenyl)‐benzyl)ether, H2L2 = 3‐carboxy‐1‐(4′‐carboxybenzyl)‐2‐oxidopyridinium, mpy = 2‐(4‐(4′‐methylphenyl)‐6‐(pyrindin‐2‐yl)pyridin‐2‐yl)pyridine), tbpy = 2‐(4‐(4′‐tert‐butylphenyl)‐6‐(pyrindin‐2‐yl)pyridin‐2‐yl)pyridine), biim‐3 = 1,3‐bis(imidazol‐1′‐yl)propane, btb = 1,4‐bis(1,2,4‐triazol‐1‐ylmethyl)benzene, bib = 1,4‐bis(imidazol‐1′‐ylmethyl)benzene] were synthesized. Compounds 1 – 6 have similar 1D chain structures, which are further linked by π–π interactions to generate supramolecular double chains for 1 and 2 , and supramolecular layers for 3 – 6 . Compound 7 displays a 3D 6‐connected framework with (44 · 611) topology. Compound 8 features a monomolecular structure, which is further linked by hydrogen bonds between the lattice water molecules and carboxylate oxygen atoms of L2 anions to form a 2D supramolecular layer. The monomolecular structures of 9 and 10 are connected by hydrogen bonds and π–π interactions simultaneously to generate supramolecular layers. Compounds 11 and 12 show layer structures.  相似文献   

10.
Excess volumes (v^E), ultrasonic velocities (u), isentropic compressibility (△Ks) and viscosities (η) for the binary mixtures of dimethyl formamide (DMF) with 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,2,4-trichlorobenzene, o-chlorotoluene, m-chlorotoluene, p-chlorotoluene, o-nitrotoluene and m-nitrotoluene at 303.15 K were studied. Excess volume data exhibit an inversion in sign for the mixtures of dimethyl formamide with 1,2- and 1,3-dichlorobenzenes and the property is completely positive over the entire composition range for the mixtures of dimethyl formamide with 1,2,4-trichlorobenzene, o-nitrotoluene and m-nitrotoluene. On the other hand, the quantity is negative for the mixtures of dimethyl formamide with chlorotoluenes. Isentropic compressibility (Ks) has been computed for the same systems from precise sound velocity and density data. Further, deviation of isentropic com- pressibility (△Ks) from ideal behavior was also calculated. AKs values are negative over the entire volume fraction range in all the binary mixtures. The experimental sound velocity data were analysed in terms of Free Length Theory (FLT) and Collision Factor Theory (CFT). The viscosity data were analysed on the basis of corresponding state approach. The measured data were discussed on the basis of intermolecular interactions between unlike molecules.  相似文献   

11.
Quantum chemical calculations at the CASSCF level of theory on the O3‐homologous molecules CX22‐, NX2, X3, OX2, and FX2+ (X: O, S, Se, Te, Po) indicate that the triatomic inorganic biradicals in the FX2+ series have unusually high biradical character.  相似文献   

12.
Electrical charging of graphitic g‐C4N3 and g‐C3N4 nanosheets is proposed as a strategy for high‐capacity and electrocatalytically switchable H2 storage.  相似文献   

13.
Tri(1‐cyclohepta‐2, 4, 6‐trienyl)phosphane, P(C7H7)3 ( 1 ) ([P] when coordinated to a metal) stabilizes platinum(II) ( 2 ) and palladium(II) dihalides ( 3 ) as [P]MX2 with X = Cl ( a ), Br ( b ) and I ( c ). The phosphane coordinates to the metal as a chelate ligand via both phosphorus and the central η2‐C=C bond of one of the cyclohepta‐2, 4, 6‐trienyl rings. The complexes were prepared by various routes, mainly by the reaction of (cod)MCl2 (cod = cycloocta‐1, 5‐diene) with 1 to give the chlorides 2a and 3a , which then could be converted into the bromides 2b , 3b or the iodides 2c , 3c by reaction with NaBr or NaI, respectively. The molecular structure of 2c was determined by X‐ray analysis. Treatment of 2a and 3a with sodium or potassium salts of several pseudohalides afforded the complexes [P]MX2 2d (NCO/NCO), 2e1 (NCS/SCN), 2e1' (SCN/NCS), 2f2 (SeCN/SeCN), 3f1 (NCSe/SeCN), 2g and 3g (X = N3). Attempts failed to synthesize the cyanides 2h and 3h by the same route. By using an excess of trimethylsilyl cyanide in the reaction with 2a in THF solution, the complex trans‐{[(C7H7)3P]2Pt(CN)2} ( 4h ) was obtained instead of 2h . The analogous complexes trans‐{[(C7H7)3P]2MX2} with M = Pt ( 4 ) and Pd ( 5 ) for X = Cl ( a ), Br ( b ), I ( c ) could be prepared from the reaction of the corresponding tetrahalogenometallates and 1 (in the case of 5c from PdI2 and 1 ). In contrast to 4h , the complexes 4a‐c and 5a‐c were found to be labile in solution with respect to partial loss of the phosphane 1 and rearrangement into 2a‐c and 3a‐c , respectively. All compounds were characterized by IR spectroscopy and by multinuclear magnetic resonance spectroscopy (1H, 13C, 31P, 77Se and 195Pt NMR). The ligand [P] in 2 and 3 is fluxional with regard to coordination of the C7H7 rings to the metal.  相似文献   

14.
Born‐Oppenheimer molecular dynamics simulations and high‐level quantum chemical computations (B3LYP, MP2, CCSD(T)) reveal the starlike D5h C5Al5 global minimum with five planar tetracoordinate carbon atoms to be a promising candidate for detection by photoelectron detachment spectroscopy.  相似文献   

15.
TaB10 and NbB10 clusters are produced in a laser‐vaporization supersonic molecular beam cluster source and characterized by photoelectron spectroscopy.  相似文献   

16.
M. Valldor  O. Breunig 《ChemInform》2011,42(33):no-no
Small crystals of the title compound are grown from BaAl2O4, Y2BaO4, and MnO in a floating‐zone mirror‐image furnace.  相似文献   

17.
Coordination Chemistry of P‐rich Phosphanes and Silylphosphanes. XXII. The Formation of [η2‐{tBu–P=P–SiMe3}Pt(PR3)2] from (Me3Si)tBuP–P=P(Me)tBu2 and [η2‐{C2H4}Pt(PR3)2] (Me3Si)tBuP–P = P(Me)tBu2 reacts with [η2‐{C2H4}Pt(PR3)2] yielding [η2‐{tBu–P=P–SiMe3}Pt(PR3)2]. However, there is no indication for an isomer which would be the analogue to the well known [η2‐{tBu2P–P}Pt(PPh3)2]. The syntheses and NMR data of [η2‐{tBu–P=P–SiMe3}Pt(PPh3)2] and [η2‐{tBu–P=P–SiMe3}Pt(PMe3)2] as well as the results of the single crystal structure determination of [η2‐{tBu–P=P–SiMe3}Pt(PPh3)2] are reported.  相似文献   

18.
The palladium(II) and platin(II) 1, 1‐dicyanoethylene‐2, 2‐dithiolates [(L–L)M{S2C=C(CN)2}] (M = Pd: L–L = dppm, dppe, dcpe, dpmb; M = Pt: dppe, dcpe, dpmb) were prepared either from[(L–L)MCl2] and K2[S2C=C(CN)2] or from [(PPh3)2M{S2C=C(CN)2}] and the bisphosphane. Moreover, [(dppe)Pt{S2C=C(CN)2}]was obtained from [(1, 5‐C8H12)Pt{S2C=C(CN)2}] and dppeby ligand exchange. The 1, 1‐dicyanoethylene‐2, 2‐diselenolates[(dppe)M{Se2C=C(CN)2}] (M = Pd, Pt) were prepared from[(dppe)MCl2] and K2[Se2C=C(CN)2]. The oxidation potentials of the square‐planar palladium and platinum complexes were determined by cyclic voltammetry. The reaction of [(dcpe)Pd(S2C=O)] with TCNE led to a ligand fragment exchange and gave the 1, 1‐dicyanoethylene‐2, 2‐dithiolate [(dcpe)Pd{S2C=C(CN)2}] in good yield.  相似文献   

19.
Compounds (III) and (VI) containing [Ge9]4‐ clusters and oxometallate anions WO42‐ or VO43‐ are characterized by single crystal XRD and Raman spectroscopy.  相似文献   

20.
The structures and chemical bonding of AlB6 and AlB11 clusters are characterized by PES and DFT calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号