首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 725 毫秒
1.
Abstract

Epoxy resin will continue to be in the forefront of many thermoset applications due to its versatile properties. However, with advancement in manufacturing, changing societal outlook for the chemical industries and emerging technologies that disrupt conventional approaches to thermoset fabrication, there is a need for a multifunctional epoxy resin that is able to adapt to newer and robust requirements. Epoxy resins that behave both like a thermoplastic and a thermoset resin with better properties are now the norm in research and development. In this paper, we viewed multifunctionality in epoxy resins in terms of other desirable properties such as its toughness and flexibility, rapid curing potential, self-healing ability, reprocessability and recyclability, high temperature stability and conductivity, which other authors failed to recognize. These aspects, when considered in the synthesis and formulation of epoxy resins will be a radical advance for thermosetting polymers, with a lot of applications. Therefore, we present an overview of the recent finding as to pave the way for varied approaches towards multifunctional epoxy resins.  相似文献   

2.
Epoxy resins are well-known materials that show beneficial properties, such as high tensile strength and modulus, good adhesive properties, low cost, and ease of processing and environmental advantages. However, epoxy resin adhesive has no characteristic of thermal storage. Latent heat storage is one of the favorable kinds of thermal energy storage methods considered for energy saving and thermal efficiency in various fields, such as solar air conditioning systems and buildings. So we prepared thermal-enhanced epoxy resin adhesive by using PCM. This paper addresses the effects of n-hexadecane and sodium lauryl sulfate on the thermal properties and chemical properties of epoxy resin adhesive and HEAC, using differential scanning calorimetry, thermal gravimetric analysis, and Fourier transform-infrared spectroscopy. Also, we evaluated the applicability of composite epoxy resin adhesive to wood-based flooring using n-hexadecane, through measurement of bonding strength from universal testing machine analysis.  相似文献   

3.
本文综述了国内外有关利用环氧树脂改性热塑性树脂共混体系研究的最新进展。着重阐述了环氧树脂在热塑性树脂之间的增容作用,如尼龙6(PA6)合金体系,改性聚苯乙烯塑料(ABS)合金体系,以及聚对苯二甲酸丙二醇酯(PTT)合金体系等。同时,介绍了利用环氧树脂的反应活性提高无机填料在聚合物中分散性研究的情况,如二氧化硅纳米粒子在聚醚砜(PES)中,以及滑石粉在聚丙烯(PP)中分散性的提高。最后,简介了环氧树脂改性热塑性树脂提高热塑性树脂物理机械性能方面的研究方向和成果并展望了环氧树脂在热塑性树脂改性研究中的前景。  相似文献   

4.
Epoxy resins are important thermosetting resins widely employed in industrial fields. Although the epoxy–imidazole curing system has attracted attention because of its reactivity, solidification of a liquid epoxy resin containing imidazoles proceeds gradually even at room temperature. This makes it difficult to use them for one‐component epoxy resin materials. Though powder‐type latent curing agents have been used for one‐component epoxy resin materials, they are difficult to apply for fabrication of fine industrial products due to their poor miscibility. To overcome this situation and to improve the shelf life of epoxy–imidazole compositions, we have developed a liquid‐type thermal latent curing agent 1 , generating an imidazole with a thermal trigger via a retro‐Michael addition reaction. The latent curing agent 1 has superior miscibility toward epoxy resins; in addition, it was confirmed that the epoxy resin composition has both high reactivity at 150 °C, and long‐term storage stability at room temperature. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2680–2688  相似文献   

5.
Hybrid polymer networks (HPNs) based on unsaturated polyester resin (UPR) and epoxy resins were synthesized by reactive blending. The epoxy resins used were epoxidised phenolic novolac (EPN), epoxidised cresol novolac (ECN) and diglycidyl ether of bisphenol A (DGEBA). Epoxy novolacs were prepared by glycidylation of the novolacs using epichlorohydrin. The physical, mechanical, and thermal properties of the cured blends were compared with those of the control resin. Epoxy resins show good miscibility and compatibility with the UPR resin on blending and the co-cured resin showed substantial improvement in the toughness and impact resistance. Considerable enhancement of tensile strength and toughness are noticed at very low loading of EPN. Thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC) were employed to study the thermal properties of the toughened resin. The EPN/UPR blends showed substantial improvement in thermal stability as evident from TGA and damping data. The fracture behaviour was corroborated by scanning electron microscopy (SEM). The performance of EPN is found to be superior to other epoxy resins.  相似文献   

6.
Epoxy resin-based composites, also those containing POSS compounds, have been the subject of extensive research because of their attractive properties and broad practical applications. However, in some applications they suffer from too long curing times or not strong enough adhesion to metals. A solution to this problem is the use of episulfide (thiirane) derivatives or their combination with epoxies. In this paper, the synthesis of new octakis[(3-(thiiran-2-yloxy)propyl)dimethylsiloxy]octasilesquioxane from its 3-glycidoxypropyldimethylsiloxy analog is described. Results of study of its influence on thermal properties as well as curing processes of modified with this compound epoxy resins hardened with maleic, phthalic, and pyromellitic anhydrides are also presented. It is shown that addition of this new thiirane functional POSS compound can significantly increase thermal stability of obtained epoxy resin composites and decrease its curing temperatures.  相似文献   

7.
Epoxy resins are widely utilized as high performance thermosetting resins for many industrial applications but characterized by a relatively low toughness. Electron beam (EB) curing of polymer resins has a number of advantages over conventional thermal curing, such as shorter curing time, low energy consumption, low cure temperature, dimensional stability, reduced manufacturing cost. In the present work liquid carboxyl-terminated butadiene acrylonitrile (CTBN) copolymers containing 8% acrylonitrile is added at different contents to improve the toughness of diglycidyl ether of bisphenol A (DGEBA) epoxy resins using triarylsulfonium hexafluoroanimonate as a photointiator. The EB irradiation was conducted 5 kGy to 250 kGy in nitrogen. The physics properties of CTBN modified epoxy resins were examined by determine gel content, DMA (dynamic mechanical analysis), UTM (Instron model 4443), SEM (scanning electron microscopy).  相似文献   

8.
Benzoxazines modified epoxy hybrid polymer matrices were developed using benzoxazines (CBDDM and BMPBDDM) and epoxy resins (DGEBA, SE and EP-HTPDMS) to make them suitable for high performance applications. The benzoxazine-epoxy hybrid polymer matrices were prepared via in-situ polymerization and were investigated for their thermal, thermo-mechanical, mechanical, electrical and morphological properties. Two types of skeletal modified benzoxazines namely 1,1-bis(3-methyl-4-hydroxyphenyl)cyclohexane benzoxazine (CBDDM) and bis(4-maleimidophenyl) benzoxazine (BMPBDDM) were synthesized by reacting paraformaldehyde and 4,4′-diaminodiphenylmethane with 1,1-bis (3-methyl-4-hydroxyphenyl)cyclohexane and N-(4-hydroxyphenyl)maleimide respectively. Epoxy resins viz., diglycidyl ether of bisphenol-A (DGEBA), silicon incorporated epoxy (SE) and siliconized epoxy resin (EP-HTPDMS) were modified with 5, 10 and 15 wt% of benzoxazines using 4,4′-diaminodiphenylmethane as a curing agent at appropriate conditions. The chemical reaction of benzoxazines with the epoxy resin was carried out thermally and the resulting product was analyzed by FT-IR spectra. The glass transition temperature, curing behavior, thermal stability, char yield and flame resistance of the hybrid polymers were analysed by means of DSC, TGA and DMA. Mechanical properties were studied as per ASTM standards. The benzoxazines modified epoxy resin systems exhibited lower values of dielectric constant and dielectric loss with an enhanced values of of arc resistance, glass transition temperatures, degradation temperatures, thermal stability, char yield, storage modulus, tensile strength, flexural strength and impact strength.  相似文献   

9.
Epoxy resins, due to their high stiffness, ease of processing, good heat, and chemical resistance obtained from cross-linked structures, have found applications in electronics, adhesives coatings, industrial tooling, and aeronautic and automotive industries. These resins are inherently brittle, which has limited their further application. The emphasis of this study is to improve the properties of the epoxy resin with a low-concentration (up to 0.4% by weight) addition of Multi-Walled Carbon Nanotubes (MWCNTs). Mechanical characterization of the modified composites was conducted to study the effect of MWCNTs infusion in the epoxy resin. Nanocomposites samples showed significantly higher tensile strength and fracture toughness compared to pure epoxy samples. The morphological studies of the modified composites were studied using Scanning Electron Microscopy (SEM).  相似文献   

10.
Epoxy resin is a thermosetting polymer with excellent performance and wide application. However, it suffers from low toughness and high brittleness because of its high crosslink density. To overcome these disadvantages, this study synthesizes a toughened, flexible, and hydrophobic epoxy resin (DGEBDBP) by introducing a flexible segment into the polymer network via a thiol-ene click reaction. The cured flexible epoxy resin is obtained by mixing E44, DGEBDBP, and polyamide curing agents of varying contents. The long alkyl side chains significantly improve the mechanical properties and hydrophobicity of the cured epoxy resin. The sample containing 75% DGEBDBP and 25% E44 achieve the highest breaking elongation that was nine times that of pure E44, the highest compressive strength of 112.8 MPa, and the highest contact angle of 101.4°. The introduction of side chains through the thiol-ene click reaction can provide a simple and effective method for designing and preparing multifunctional epoxy resins.  相似文献   

11.
Biobased epoxy resins were synthesized from a catechin molecule, one of the repetitive units in natural flavonoid biopolymers also named condensed tannins. The reactivity of catechin toward epichlorohydrin to form glycidyl ether derivatives was studied using two model compounds, resorcinol and 4‐methylcatechol, which represent the A and B rings of catechin, respectively. These model molecules clearly showed differences in reactivity upon glycidylation, explaining the results found with catechin monomer. The reaction products were characterized by both FTIR and NMR spectroscopy and chemical assay. The glycidyl ether of catechin (GEC) was successfully cured in various epoxy resin formulations. The GECs thermal properties showed that these new synthesized epoxy resins displayed interesting properties compared to the commercial diglycidyl ether of bisphenol A (DGEBA). For instance, when incorporated up to 50% into the DGEBA resin, GEC did not modify the glass‐transition temperature. Epoxy resins formulated with GEC had slightly lower storage moduli but induced a decrease of the swelling percentage, suggesting that GEC‐enhanced crosslinking in the epoxy resin networks. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

12.
利用生物来源的二聚脂肪酸为原料,合成了二聚酸酰肼和二聚酸酰腙两种衍生物,并进一步以其作为环氧E-44树脂固化剂,得到了新型的含动态共价连接的热固性环氧树脂。采用傅里叶红外光谱(FT-IR)、差式扫描量热(DSC)、扫描电子显微镜(SEM)、热重(TG)和动态力学分析(DMA)等多种测试手段对环氧树脂固化过程以及固化后材料的结构与性能关系进行了详细表征,特别研究了动态亚胺键对热固性环氧树脂性能的独特影响。结果表明:与传统环氧树脂相比,改性后的环氧树脂有更好的韧性,且其玻璃化转变温度及热稳定性没有明显下降。在升温和加压的条件下,酸可催化亚胺键的动态交换反应,赋予传统环氧树脂以全新的可修复、可回收与可多次加工性能。  相似文献   

13.
Modification of epoxy resin using reactive liquid (ATBN) rubber   总被引:5,自引:0,他引:5  
Epoxy resins are widely utilised as high performance thermosetting resins for many industrial applications but unfortunately some are characterised by a relatively low toughness. In this respect, many efforts have been made to improve the toughness of cured epoxy resins by the introduction of rigid particles, reactive rubbers, interpenetrating polymer networks and engineering thermoplastics within the matrix.In the present work liquid amine-terminated butadiene acrylonitrile (ATBN) copolymers containing 16% acrylonitrile is added at different contents to improve the toughness of diglycidyl ether of bisphenol A epoxy resin using polyaminoimidazoline as a curing agent. The chemical reactions suspected to take place during the modification of the epoxy resin were monitored and evidenced using a Fourier transform infrared. The glass transition temperature (Tg) was measured using a differential scanning calorimeter. The mechanical behaviour of the modified epoxy resin was evaluated in terms of Izod impact strength (IS), critical stress intensity factor, and tensile properties at different modifier contents. A scanning electron microscope (SEM) was used to elucidate the mechanisms of deformation and toughening in addition to other morphological features. Finally, the adhesive properties of the modified epoxy resin were measured in terms of tensile shear strength (TSS).When modifying epoxy resin with liquid rubber (ATBN), all reactivity characteristics (gel time and temperature, cure time and exotherm peak) decreased. The infrared analysis evidenced the occurrence of a chemical reaction between the two components. Addition of ATBN led to a decrease in either the glass transition temperature and stress at break accompanied with an increase in elongation at break and the appearance of some yielding. As expected, the tensile modulus decreased slightly from 1.85 to about 1.34 GPa with increasing ATBN content; whereas a 3-fold increase in Izod IS was obtained by just adding 12.5 phr ATBN compared to the unfilled resin. It is obvious that upon addition of ATBN, the Izod IS increased drastically from 0.85 to 2.86 kJ/m2 and from 4.19 to 14.26 kJ/m2 for notched and unnotched specimens respectively while KIC varies from 0.91 to 1.49 MPa m1/2 (1.5-fold increase). Concerning the adhesive properties, the TSS increased from 9.14 to 15.96 MPa just by adding 5 phr ATBN. Finally SEM analysis results suggest rubber particles cavitation and localised plastic shear yielding induced by the presence of the dispersed rubber particles within the epoxy matrix as the prevailing toughening mechanism.  相似文献   

14.
环氧树脂水基化化学改性的研究   总被引:13,自引:0,他引:13  
用对氨基苯甲酸改性环氧树脂 ,使其成为具有亲水性的树脂。测定了改性树脂的溶解性 ,发现改性后树脂在有机溶剂中的溶解性能变差 ,但在碱性溶剂中溶解性增强。对改性树脂进行了红外光谱表征 ,并根据环氧基特征峰的吸收对环氧基转化率进行了定量分析。测定了改性产物的DSC曲线 ,发现随着反应物中对氨基苯甲酸比例的提高 ,改性产物的玻璃化转变温度升高。涂膜的性能测试表明 ,对氨基苯甲酸改性环氧树脂水基涂料的机械力学性能和耐化学试剂性能比溶剂型纯环氧树脂要优越。  相似文献   

15.
Perfluorobutenyloxyphthalic anhydride (PFPA) has been synthesized as a new curing agent for epoxy resins, and the properties of epoxy resin cured with PFPA have been investigated. Good PFPA synthesis yields were realized by a dehydrating ring closure of perfluorobutenyloxyphthalic acid, which was obtained through the reaction of hexafluoropropene trimers with 4-hydroxyphthalic acid. Epoxy resin cured with PFPA was found to have several excellent properties. Its boilding water absorption was 0.45%, which is about a one-fourth that for conventionally cured epoxy resin. Its heat resistance was excellent, and its critical surface tension was almost the same as for PTFE.  相似文献   

16.
Epoxy resins are mostly produced from petroleum-based bisphenol A and epicholorhydrin. Bisphenol A is synthesized from non-renewable petroleum-based phenol and acetone. Biomass derived epoxy-based polymers (EBPs) are becoming the most promising alternative for petroleum-based counterparts, but still these biomass-based EBPs have inferior properties. In the present work, two types of epoxy resins were prepared with different weight percentages of resin (bisphenol A) and hardener. They were then modified with different weight percentages of liquefied wood from spruce sawdust. The derived EBPs were analysed in terms of tensile strength and tensile modulus, fractured surface morphology, thermal stability, long-term water adsorption and resistance to brown-rot fungus decay. The results revealed that the percentages of hardener and liquefied wood significantly influenced the overall properties of the EBPs.  相似文献   

17.
The particles of natural zeolite in combination with boric acid were incorporated into the epoxy resin ED-20 in order to improve the thermal stability of epoxy polymer. Epoxy resin was cured using polyethylenepolyamine. Characterization of the epoxy composites was carried out by using Fourier transform infrared spectrometry, thermogravimetric analysis (TG) and differential scanning calorimetry (DSC) under flow of air and argon. The thermal behavior of the zeolite/boric acid-based epoxy composites (total percentage 15 mass%) were compared with that of 15 mass% boric acid-based epoxy system and the neat epoxy resin. TG and DSC results revealed that the combination of 5 mass% zeolite and 10 mass% boric acid significantly increased the mid-point temperature and residue, and decreased the maximum decomposition rate of the epoxy composites at the heating.  相似文献   

18.
采用多异氰酸酯制备一种季铵化剂,该季铵化剂和环氧树脂反应制备含有季铵盐基团的阳离子颜料分散树脂及颜料浆。本文研究了TDI单体类型、环氧树脂分子量、IO封闭TDI摩尔比例对颜料分散树脂水溶性、分散性及颜料浆稳定性的影响,并对颜料分散树脂和颜料浆的性能进行测试,结果表明:该颜料分散树脂对颜料具有优异的分散效果;该颜料分散树脂和常见颜料分散研磨而成的颜料浆贮存稳定性、施工稳定性性能优异,该产品具有良好的市场应用前景。  相似文献   

19.
Epoxy functional (poly)siloxanes are one of the most important classes of modified silicones. Due to high reactivity of epoxy group and specific features of siloxane chain, they can make an excellent raw material for synthesis of hybrid materials. Results obtained in this study have shown that both the modification of epoxy resins with epoxy functional disiloxanes as well as the application of polysiloxanes with long polysiloxane chains and a specified content of epoxy groups makes it possible to produce hybrid materials of very good thermal stability. Crosslinking reactions were carried out with use of four diamines of which the best one appeared to be 4,4??-diaminodiphenylmethane. The highest thermal stability was found in the case of hybrid materials obtained from epoxy functional polysiloxanes.  相似文献   

20.
利用有机氟改性环氧树脂是提高环氧树脂综合性能的有效途径。目前含氟环氧树脂已经成为学者研究的重点。文章扼要综述了有机氟对改善环氧树脂的表面性能、耐热性能、介电性能、耐摩擦性能及阻燃性能的最新研究进展。展望了有机氟改性环氧树脂的发展趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号