首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experimental solubility curves and tie-line data for the (water + 2-butanol + organic solvents) systems were obtained at T = 298.2 K and atmospheric pressure. The organic solvents were four heavy alcohols, i.e. 1-hexanol, 1-heptanol, 1-octanol, and 1-decanol. The consistency of the experimental tie-line data was determined through the Othmer–Tobias and Bachman equations. Distribution coefficients and separation factors were calculated to evaluate the extracting capability of the solvents. The experimental data were correlated using the NRTL (α = 0.2) and UNIQUAC models, and binary interaction parameters were obtained. The average root mean square deviation values between the experimental and calculated data show the capability of these models, in particular NRTL model, in correlation of the phase behavior of the ternary systems.  相似文献   

2.
《Fluid Phase Equilibria》2005,231(2):163-170
Liquid–liquid equilibria for three ternary systems: dodecane, or tetradecane, or heptadecane + propylbenzene + NMP was studied over a temperature range of 298–328 K. The three systems studied exhibit type I liquid–liquid phase diagram. The effect of temperaure and n-alkane chain length upon solubility, selectivity, and distribution coefficient were investigated experimentally. The experimental results were regressed to estimate the interaction parameters between each of the three pairs of components for the UNIQUAC and the NRTL models as a function of temperature. Both models satisfactorily correlate the experimental data, however the UNIQUAC fit was slightly better than that obtained with the NRTL model. The values of distribution coefficient and selectivity were predicated from the equilibrium data.  相似文献   

3.
Data on (solid + liquid) equilibrium of tylosin tartrate in {methanol + (ethanol, 1-propanol or 2-propanol)} solvents will provide essential support for industrial design and further theoretical studies. In this study, the solubility of tylosin tartrate in alcohol mixtures was measured over temperature range from (278.15 to 323.15) K under atmospheric pressure by a gravimetric method. From the experimental results, the solubility of tylosin tartrate in selected solvents noted above was found to increase with increasing temperature and mass fraction of methanol. The solubility data were correlated with the modified Apelblat equation, the λh equation and van’t Hoff equation. The results showed that the three equations agreed well with the experimental values, and that the modified Apelblat equation was more accurate than the λh equation and van’t Hoff equation. Further, the standard enthalpy, standard entropy and standard Gibbs free energy of solution of tylosin tartrate in mixed solvents were calculated according to solubility results, model parameters with modified Apelblat equation and van’t Hoff equation.  相似文献   

4.
New solubility and liquid–liquid equilibrium (LLE) data of solutions of (water + ethanol + α,α,α-trifluorotoluene) are determined at three temperatures (288.15, 298.15, and 308.15) K and atmospheric pressure. The solubility and LLE data are correlated quantitatively by empirical equations, NRTL, and UNIQUAC models. The effect of temperature upon miscibility of the ternary systems is small. Practically, α,α,α-trifluorotoluene is capable to extract efficiently ethanol from its dilute aqueous solutions to obtain absolute alcohol.  相似文献   

5.
The solubility of 4-chloro-2,5-dimethoxynitrobenzene (CDMB) and 4-chloro-2,5-dimethoxyaniline (CDMA) in methanol, ethanol, xylene and toluene was measured over the temperatures range from (278 to 338) K by the dynamic method using a laser monitoring observation technique. The solubility in all solvents increased with temperature and the greatest solubility of both systems was obtained in toluene. The Wilson and the NRTL models were applied to correlate the experimental results. The root-mean-square deviations for the system of (CDMB + solvent) ranged from T = (0.11 to 0.34) K and (0.08 to 0.33) K calculated by the Wilson and the NRTL models, respectively, while for the system of (CDMA + solvent) the root-mean-square deviations ranged from T = (0.11 to 0.32) K and (0.14 to 0.33) K. The melting points and enthalpies of fusion of CDMA and CDMB were determined by differential scanning calorimetry (DSC). Toluene was found to be the preferred solvent for the reduction of CDMB to CDMA from the point of view of reaction and product separation  相似文献   

6.
(Liquid + liquid) equilibrium data for (water + ethanol + 2-ethyl-1-hexanol) were measured at atmospheric pressure in the temperature range (298.2 to 313.2) K. A type 1 (liquid + liquid) phase diagram was obtained for this ternary system. The experimental tie-line data for this system were correlated with the UNIQUAC solution model. The values of the interaction parameters between each pair of components in the system were obtained for the UNIQUAC model with the experimental results. The root mean square deviation between the observed and calculated mole per cent was 1.70%. The mutual solubility of 2-ethyl-1-hexanol and water was also investigated by the addition of ethanol at different temperatures.  相似文献   

7.
A flow-mixing isothermal microcalorimeter was used to measure excess molar enthalpies for four binary systems of {diethyl oxalate + (methanol, + ethanol, + 1-propanol, and + 2-propanol)} at T = (288.2, 298.2, 313.2, and 328.2) K and p = 101.3 kPa. The densities of the diethyl oxalate at different temperature were measured by using a vibrating-tube densimeter. All systems exhibit endothermic behaviour over the whole composition range, which means that the rupture of interactions is energetically the main effect. The excess molar enthalpies increase with temperature and the molecular size of the alcohols. The experimental results were correlated by using the Redlich–Kister equation and two local-composition models (NRTL and UNIQUAC).  相似文献   

8.
(Liquid + liquid) equilibrium (LLE) data for {water (1) + methanol (2) + β-citronellol (3)} and {water (1) + ethanol (2) + β-citronellol (3)} ternary systems at T = (283.15, 298.15, and 313.15) K are reported. The immiscible region of (water + methanol + β-citronellol) system was found to be larger than that for the ethanol system at the same temperature. The effect of the temperature on the ternary (liquid + liquid) equilibria was examined and discussed. The experimental (liquid + liquid) equilibrium data have been satisfactorily represented by using extended UNIQUAC and modified UNIQUAC models.  相似文献   

9.
The extraction of aromatic compound toluene from alkane, dodecane, by mixed solvents (water + methanol), (water + ethanol) and (methanol + ethanol) have been studied by (liquid + liquid) equilibrium (LLE) measurements at three temperatures (298.15, 303.15, and 313.15) K and ambient pressure. The compositions of liquid phases at equilibrium were determined by gas liquid chromatography.The experimental tie-line data for three quaternary mixtures of {(water + methanol) + toluene + dodecane}, {(water + ethanol) + toluene + dodecane}, and {(methanol + ethanol) + toluene + dodecane} are presented. The experimental quaternary LLE data have been satisfactorily correlated by using the UNIQUAC and NRTL activity coefficient models. The parameters of the models have been evaluated and presented. The tie-line data of the studied quaternary mixtures also were correlated using the Hand method. The partition coefficients and the selectivity factor of solvent are calculated and compared for the three mixed solvents.The comparisons indicate that the selectivity factor for mixed solvent (methanol + ethanol) is higher than the other two mixed solvents at the three studied temperatures. However, considering the temperature variations of partition coefficients of toluene in two liquid phases at equilibrium, an optimum temperature may be obtained for an efficient extraction of toluene from dodecane by the mixed solvents.  相似文献   

10.
Solubility has been extensively investigated by the phase equilibria approach at the mesoscale level, but its origin on the molecular and electronic levels is poorly understood. This study explored the solubility behaviour of crystalline solid in selected pure solvents with various functional groups by using both phase equilibria and molecular modelling methods. The model compound tridecanedioic acid (TDDA) solubility in methanol, ethanol, acetic acid, acetone, and ethyl acetate was determined from T = (283.15 to 323.15) K by a static method. It was found that almost all solutions studied exhibit non-ideal behaviour and deviate positively from Raoult’s law indicating the important role of homo-molecules interactions. Thermodynamic analyses of solution suggest that both enthalpy and entropy of solution govern the dissolution process. Computational studies on solubility behaviour were performed by using both density functional theory (DFT) calculations and molecular dynamic (MD) simulations. The results conclude that the (solute + solvent) interaction is not the only factor determining solubility, and (solvent + solvent) interaction also plays an important role. The simulated results are found to be qualitatively consistent with experimental values. Finally, solubility values were correlated by the empirically modified Apelblat equation and two local composition models of Wilson and NRTL.  相似文献   

11.
This work reports new liquid–liquid solubility values (binodal curves) as well as (liquid + liquid) equilibrium data for, ternary and quaternary systems containing fatty acid methyl esters (FAME) and fatty acid ethyl esters (FAEE) from castor oil, water, glycerol, methanol and anhydrous ethanol at T = (303.15, 318.15, and 333.15) K. Solubility curves (binodal) were also obtained by the cloud-point method for binary systems containing FAME, FAEE, water, or glycerol. All results obtained can be considered of good quality. The experimental values were correlated using the UNIQUAC model, whose results presented good performance and satisfactory fitting of equilibrium values.  相似文献   

12.
The solubilities of apigenin and apigenin 7-O-rhamnosylglucoside in water, methanol, ethanol, 1-propanol, 1-butanol, acetone, and ethyl acetate from T = (288.2 to 328.2) K were measured. The solubilities of apigenin and apigenin 7-O-rhamnosylglucoside in selected solvents increase with increasing temperature, respectively. The experimental solubility data were correlated by a simplified thermodynamic equation and a three-parameter empirical equation.  相似文献   

13.
A glass dynamic recirculating still was employed for the measurement of isothermal (vapour + liquid) equilibrium (VLE) data for the binary mixtures of diisopropyl ether (DIPE) + alcohol, viz. (DIPE + methanol), (DIPE + ethanol), and (DIPE + 1-butanol) at T = (305.15, 315.15, and 325.15) K, T = (313.15, 323.15, and 333.15) K and T = (318.15, and 338.15) K, respectively. The combined standard uncertainties in the reported system pressures, temperatures and phase compositions are ±0.2 kPa, ±0.1 K and ±0.003, respectively. Maximum pressure azeotropes were observed for all isotherms of the (DIPE + methanol) and (DIPE + ethanol) systems. The experimental results were correlated using both the γϕ and ϕϕ approaches. For the correlation of the VLE data with the γϕ approach, the Wilson, NRTL and UNIQUAC GE models with the truncated two-term virial equation of state (Hayden and O’Connell correlation for second virial coefficient computation) were used. In the ϕϕ correlation approach, the Peng–Robinson equation of state was used with the Wong–Sander mixing rules incorporating the same GE models used in the γϕ approach. Comparisons between the experimental values and predictions using UNIFAC (Dortmund) and the Predictive Soave–Redlich–Kwong (PSRK) model were performed to test the predictive capabilities of these models for the experimental data measured here. The thermodynamic consistency of the experimental data was checked with the Herington area test.  相似文献   

14.
Ternary (liquid + liquid) equilibria date for the (water + 2-propanol + α-pinene, or β-pinene) systems were measured at T = (293.15, 298.15, 303.15, and 308.15) K under atmospheric pressure. The experimental results were correlated using the extended and modified UNIQUAC models. The calculated results obtained from the modified UNIQUAC model successfully represent the experimental tie-line data. The temperature influence on liquid-phase equilibria was studied.  相似文献   

15.
(Liquid + liquid) equilibrium (LLE) data for {water (1) + linalool (2) + limonene (3)} ternary system at T = (298.15, 308.15, and 318.15 ± 0.05) K are reported. The organic chemicals were quantified by gas chromatography using a flame ionisation detector while water was quantified using a thermal conductivity detector. The effect of the temperature on (liquid + liquid) equilibrium is determined and discussed. Experimental data for the ternary mixture are compared with values calculated by the NRTL and UNIQUAC equations, and predicted by means of the UNIFAC group contribution method. It is found that the UNIQUAC and NRTL models provide a good correlation of the solubility curve at these three temperatures, while comparing the calculated values with the experimental ones, the best fit is obtained with the NRTL model. Finally, the UNIFAC model provides poor results, since it predicts a greater heterogeneous region than experimentally observed.  相似文献   

16.
《Fluid Phase Equilibria》2006,240(1):79-86
The phase equilibria for the ternary system: dodecane + sec-butylbenzene + N,N-dimethylformamide (DMF) was studied over a temperature range of 288–318 K and at atmospheric pressure. Such a system is found in the extraction of aromatics in the middle distillate production. The system studied exhibits type I liquid–liquid phase diagram. The values of distribution coefficients and selectivities were calculated from the equilibrium data. The effect of temperature and solute concentration in the feed upon solubility, distribution coefficient, and selectivity were investigated experimentally and theoretically. The experimental results of the studied system was regressed to estimate the interaction parameters between each of the three pairs of components with NRTL and UNIQUAC models as a function of temperature. Both models satisfactorily correlate the experimental data, and they are equally the same.  相似文献   

17.
This work deals with the prediction and experimental measurements of the (solid + liquid) equilibrium (SLE) in acid medium for industrial purposes. Specific systems including KCl–ethanol–water–HCl and K2SO4–water–H2SO4 were analyzed. At first, a critical discussion of SLE calculations was given, based on the well-known UNIQUAC extended and LIQUAC models. Two new proposals were derived, considering the explicit necessity of a new reference state for SLE calculations for the studied (solvents + acid) mixtures. The solubility of KCl in water–ethanol–HCl mixed solvents was measured in the temperature range of 300.15 to 315.15 K using an analytical gravimetric method. These results combined with some other experimental data reported in the open literature let us to propose a set of parameters for the new models. They included the interaction parameters between ethanol and the H+ ion. The prediction capability of the new models, for calculations in acid medium, was illustrated. Experimentally, it was observed that the (K2SO4 + water + H2SO4) system presented the unusual behavior of increasing K2SO4 solubility with an increase in the sulfuric acid concentration. This was accurately predicted by the newly proposed models.  相似文献   

18.
Experimental solubility and tie-line data were obtained for (water + phosphoric acid + ethyl benzene or cumene) ternary systems at T = (298.15, 308.15 and 318.15) K and P = 101.32 kPa. The experimental tie-line values were correlated using the thermodynamic models of UNIQUAC and NRTL. The quality of the experimental results was determined through the Othmer–Tobias and Hand plots. Distribution coefficients and separation factors were evaluated over the immiscibility regions. The influence of temperature on biphasic region is found to be negligible.  相似文献   

19.
In this work, experimental solubility and tie-line data for the (water + butyric acid + cyclohexanone) system were obtained at T = (298.2, 308.2, and 318.2) K and atmospheric pressure. The ternary system investigated exhibits type-1 behavior of LLE. The experimental tie-line data were compared with those correlated by the UNIQUAC and NRTL models. The consistency of the experimental tie-line data was determined through the Othmer Tobias and Hand correlation equations. Distribution coefficients and separation factors were evaluated over the immiscibility regions. A comparison of the extracting capability of the solvent at different temperatures was made with respect to separation factors. The Katritzky and Kamlet–Abboud–Taft multiparameter scales were applied to correlate distribution coefficients and separation factors in this ternary system. The LSER models values were interpreted in terms of intermolecular interactions.  相似文献   

20.
Liquid–liquid equilibrium (LLE) data were determined for the quaternary systems of {(water + methanol or ethanol) + m-xylene + n-dodecane} at three temperatures 298.15, 303.15 and 313.15 K and atmospheric pressure. The composition of liquid phases at equilibrium was determined by gas–liquid chromatography and the results were correlated with the UNIQUAC and NRTL activity coefficient models. The partition coefficients and the selectivity factor of the solvent are calculated and compared. The phase diagrams for the quaternary systems including both the experimental and correlated tie lines are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号