首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 132 毫秒
1.
Wave packets in a smoothly inhomogeneous medium are governed by a nonlinear Schrödinger (NLS) equation with variable coefficients. There are two spatial scales in the problem: the spatial scale of the inhomogeneities and the distance over which nonlinearity and dispersion affect the packet. Accordingly, there are two limits where the problem can be approached asymptotically: when the former scale is much larger than the latter, and vice versa. In this paper, we examine the limit where the spatial scale of (periodic or random) inhomogeneities is much smaller than that of nonlinearity/dispersion (i.e., the latter effects are much weaker than the former). In this case, the packet undergoes rapid oscillations of the geometric-optical type, and also evolves slowly due to nonlinearity and dispersion. We demonstrate that the latter evolution is governed by an NLS equation with constant (averaged) coefficients. The general theory is illustrated by the example of surface gravity waves in a channel of variable depth. In particular, it is shown that topography increases the critical frequency, for which the nonlinearity coefficient of the NLS equation changes sign (in such cases, no steady solutions exist, i.e., waves with frequencies lower than the critical one disperse and cannot form packets).  相似文献   

2.
Employing the similarity transformation connected with the standard constant coefficient nonlinear Schrödinger equation, we obtain the analytical rogue wave solutions to a generalized variable coefficient nonlinear Schrödinger equation with external potentials describing the pulse propagation in nonlinear media with transverse and longitudinal directions nonuniformly distributed. Based on the obtained solutions, abundant structures of rogue waves are constructed by selecting some special parameters. The main properties as well as the dynamic behaviors of these rogue waves are discussed by direct computer simulations.  相似文献   

3.
For the Boltzmann equation with an external force in the form of the gradient of a potential function in space variable, the stability of its stationary solutions as local Maxwellians was studied by S. Ukai et al. (2005) through the energy method. Based on this stability analysis and some techniques on analyzing the convergence rates to stationary solutions for the compressible Navier-Stokes equations, in this paper, we study the convergence rate to the above stationary solutions for the Boltzmann equation which is a fundamental equation in statistical physics for non-equilibrium rarefied gas. By combining the dissipation from the viscosity and heat conductivity on the fluid components and the dissipation on the non-fluid component through the celebrated H-theorem, a convergence rate of the same order as the one for the compressible Navier-Stokes is obtained by constructing some energy functionals.  相似文献   

4.
This paper studies the existence, uniqueness and asymptotic behavior of the solution for a half-space linearized stationary Boltzmann equation with an external force term, in the case of a specified incoming distribution at the boundary and a given mass flux. Without the external force, the solution of the stationary Boltzmann equation has been proved to tend toward a constant state, which is independent of the space variable. Due to the presence of the external force, we show that the solution tends to some function which depends on the space variable.  相似文献   

5.
This paper is concerned with the effect of slowly changing the length of a tank on the nonlinear standing waves (free vibrations) and resonant forced oscillations of shallow water in the tank. The analysis begins with the Boussinesq equations. These are reduced to a nonlinear differential-difference equation for the slow variation of a Riemann invariant on one end. Then a multiple scale expansion yields a KdV equation with slowly changing coefficients for the standing wave problem, which is reduced to a KdV equation with a variable dispersion coefficient. The effect of changing the tank length on the number of solitons in the tank is investigated through numerical solutions of the variable coefficient KdV equation. A KdV equation which is “periodically” forced and slowly detuned results for the passage through resonance problem. Then the amplitude-frequency curves for the fundamental resonance and the first overtone are given numerically, as well as solutions corresponding to multiple equilibria. The evolution between multiple equilibria is also examined.  相似文献   

6.
This paper is concerned with the effect of slowly changing the length of a tank on the nonlinear standing waves (free vibrations) and resonant forced oscillations of shallow water in the tank. The analysis begins with the Boussinesq equations. These are reduced to a nonlinear differential-difference equation for the slow variation of a Riemann invariant on one end. Then a multiple scale expansion yields a KdV equation with slowly changing coefficients for the standing wave problem, which is reduced to a KdV equation with a variable dispersion coefficient. The effect of changing the tank length on the number of solitons in the tank is investigated through numerical solutions of the variable coefficient KdV equation. A KdV equation which is “periodically” forced and slowly detuned results for the passage through resonance problem. Then the amplitude-frequency curves for the fundamental resonance and the first overtone are given numerically, as well as solutions corresponding to multiple equilibria. The evolution between multiple equilibria is also examined.Received: December 16, 2003  相似文献   

7.
考虑到耗散效应和地形外力,Rossby波的振幅可由受迫耗散Boussinesq方程来描述.当包含这两项时,模型比较复杂,不具有Painleve性质.通过将模型双线性化,双线性方法是一个可寻找孤波解和B(a|¨)cklund变换的方法.通过截断的Painleve展开式,得到了将方程双线性化的合适的因变量变换.然后得到了受迫耗散Boussinesq方程的单孤波解和B(a|¨)cklund变换.  相似文献   

8.
Plane one-dimensional waves of small amplitude, propagating transverse to an incompressible elastic layer and reflected successively from its boundaries, are considered. The oscillations are caused by small periodic (or close to periodic) external action on one of the layer boundaries, when the period of the external action is close to the period of natural oscillations of the layer. One of the boundaries of the elastic layer is fixed, while the other performs small specified two-dimensional motion in its plane. In such a near-resonance situation, non-linear effects occur which may build up over time. A system of equations is obtained which describes the slow change in the functions characterizing the oscillations of the medium in each period of the external action. It is assumed that all the quantities depend both on real time, any change of which in the approach considered is limited to one period, and on “slow” time, for which one period of real time serves as a small quantity. It is assumed that the evolution of the solution occurs when the slow time changes, while the role of real time is similar to the role of a spatial variable. This system of equations is obtained by the method of averaging over a period of the quantities representing nonlinear terms and the effect of the boundary conditions in the equations. It contains derivatives with respect to the real and slow times and also values of the functions characterizing the solution averaged over a period of the real time. If the averaged values are known, the equations have a hyperbolic form and their solutions can be both continuous and contain weak and strong discontinuities.  相似文献   

9.
We study the modulation of nonlinear waves in fluid-filled prestressed tapered tubes. For this, we obtain the nonlinear dynamical equations of motion of a prestressed tapered tube filled with an incompressible inviscid fluid. Assuming that the tapering angle is small and using the reductive perturbation method, we study the amplitude modulation of nonlinear waves and obtain the nonlinear Schrödinger equation with variable coefficients as the evolution equation. A traveling-wave type of solution of such a nonlinear equation with variable coefficients is obtained, and we observe that in contrast to the case of a constant tube radius, the speed of the wave is variable. Namely, the wave speed increases with distance for narrowing tubes and decreases for expanding tubes.  相似文献   

10.
Nonstationary solutions of the Cauchy problem are found for a model equation that includes complicated nonlinearity, dispersion, and dissipation terms and can describe the propagation of nonlinear longitudinal waves in rods. Earlier, within this model, complex behavior of traveling waves has been revealed; it can be regarded as discontinuity structures in solutions of the same equation that ignores dissipation and dispersion. As a result, for standard self-similar problems whose solutions are constructed from a sequence of Riemann waves and shock waves with stationary structure, these solutions become multivalued. The interaction of counterpropagating (or copropagating) nonlinear waves is studied in the case when the corresponding self-similar problems on the collision of discontinuities have a nonunique solution. In addition, situations are considered when the interaction of waves for large times gives rise to asymptotics containing discontinuities with nonstationary periodic oscillating structure.  相似文献   

11.
The linear dispersion relation and a modified variable coefficients Korteweg–de Vries (MKdV) equation governing the three-dimensional dust acoustic solitary waves are obtained in inhomogeneous dusty plasmas comprised of negatively charged dust grains of equal radii, Boltzmann distributed electrons and nonthermally distributed ions. The numerical results show that the inhomogeneity, the nonthermal ions, the external magnetic field and the collision have strong influence on the frequency and the nonlinear properties of dust acoustic solitary waves and both dust acoustic solitary holes (soliton with a density dip) and positive solitons (soliton with a density hump) are excited.  相似文献   

12.
Using the method of multiple scales, the nonlinear instability problem of two superposed dielectric fluids is studied. The applied electric filed is taken into account under the influence of external modulations near a point of bifurcation. A time varying electric field is superimposed on the system. In addition, the viscosity and variable gravity force are considered. A generalized equation governing the evolution of the amplitude is derived in marginally unstable regions of parameter space. A bifurcation analysis of the amplitude equation is carried out when the dissipation due to viscosity and the control parameter are both assumed to be small. The solution of a nonlinear equation in which parametric and external excitations are obtained analytically and numerically. The method of generalized synchronization is applied to determine the equations that describe the modulation of the amplitude and phase. These equations are used to determine the steady state equations. Frequency response curves are presented graphically. The stability of the proposed solution is determined applying Liapunov's first method. Numerical solutions are presented graphically for the effects of the different equation parameters on the system stability, response and chaos.  相似文献   

13.
Small periodic (with respect to time) perturbations of an essentially nonlinear differential equation of the second order are studied. It is supposed that the restoring force of the unperturbed equation contains both a conservative and a dissipative part. It is also supposed that all solutions of the unperturbed equation are periodic. Thus, the unperturbed equation is an oscillator. The peculiarity of the considered problem is that the frequency of oscillations is an infinitely small function of the amplitude. The stability problem for the zero solution is considered. Lyapunov investigated the case of autonomous perturbations. He showed that the asymptotic stability or the instability depends on the sign of a certain constant and presented a method to compute it. Liapunov’s approach cannot be applied to nonautonomous perturbations (in particular, to periodic ones), because it is based on the possibility to exclude the time variable from the system. Modifying Lyapunov’s method, the following results were obtained. “Action–angle” variables are introduced. A polynomial transformation of the action variable, providing a possibility to compute Lyapunov’s constant, is presented. In the general case, the structure of the polynomial transformation is studied. It turns out that the “length” of the polynomial is a periodic function of the exponent of the conservative part of the restoring force in the unperturbed equation. The least period is equal to four.  相似文献   

14.
A detailed study is undertaken to analyze the non-steady interaction of plane progressive pressure pulses with an isotropic, homogeneous, fluid-filled and submerged spherical elastic shell of arbitrary wall thickness within the scope of linear acoustics. The formulation is based on the general three dimensional equations of linear elasticity and the wave equation for the internal and external acoustic domains. The Laplace transform with respect to the time coordinate is invoked, and the classical method of separation of variables is used to obtain the transformed solutions in the form of partial-wave expansions in terms of Legendre polynomials. The inversion of Laplace transforms have been carried out numerically using Durbin’s approach based on Fourier series expansion. Special convergence enhancement techniques are invoked to completely eradicate spurious oscillations (Gibbs’ phenomenon), and obtain uniformly convergent solutions. Detailed numerical results for the transient and vibratory responses of water-submerged steel shells of selected wall thickness parameters with various internal fluid loadings under an exponential wave excitation are presented. Many of the interesting dynamic features in the transient shell–shock interaction such as shock transparency, shell-radiated negative pressure waves, formation of triple points, and focusing of the reflected waves are examined using appropriate 2D images of the internal pressure field. Also, the temporal behavior of the specularly-reflected, the lowest symmetric S0- and antisymmetric A0-Lamb waves, as well as appearance of the Franz’s creeping waves are discussed through proper visualization of the external scattered field. Likelihood of cavitation is addressed and regions proned to cavitation are identified. Moreover, the effects of internal fluid impedance in addition to shell wall thickness on the dynamic stress concentrations induced within the shell are analyzed. Limiting cases are considered and fair agreements with well-known solutions are established.  相似文献   

15.
研究了电流变液的微结构本构关系.其理论框架是基于内变量理论和机理的分析.电流变液是由高介电常数的颗粒悬浮在某种液体中组成的.在电场作用下,极化的颗粒将沿着电场方向聚集在一起形成链状结构.颗粒聚集体的大小和方向将随外加电场和应变率的变化进行调整,因而可以通过建立起能量守恒方程和力平衡方程来确定颗粒聚集体的大小和方向的变化.那么,一个三维的、清晰的本构关系可以由相互作用能和系统的耗散能导出.具体考虑和讨论了在简单剪切载荷作用下的系统响应,发现电流变液的切变剪薄粘滞系数同系统Mason数之间近似于幂指数∝(Mn)-082的关系.  相似文献   

16.
In this paper we consider a dispersive–dissipative nonlinear equation which can be regarded as a dissipation perturbed modified KdV equation, governing the evolution of long waves in an elastic rod immersed inside a viscoelastic medium. Using geometric singular perturbation theory, a construction of traveling waves for the equation is shown. This also is illustrated by presenting some numerical calculations.  相似文献   

17.
Phase locking is studied in a one-dimensional medium under the action of an external force with slowly changing frequency. In a typical situation, the phase locking is described by a nonstationary nonlinear Schr¨odinger equation with external force. For large values of the time variable, the leading term of a space-localized growing asymptotic solution with soliton profile in the main order is constructed. It turned out that a time-growing asymptotic solution can be obtained for an external excitation with decreasing amplitude. Necessary growth conditions are deduced for such a solution in the presence of dissipation.  相似文献   

18.
The radial oscillations of a viscoelastic, weakly conducting, nonmagnetic cylinder are studied. The oscillations are excited by a contact-free induction method in the presence of a constant axial magnetic field. The Joule heating and viscous heating densities are calculated for two types of boundary conditions. The effect of electric conductivity on the dissipation of the energy of magnetoacoustic disturbances is compared with the effect of viscosity. The spectra of resonance oscillations of the cylinder are investigated.Translated from Matematicheskie Metody i Fiziko-Mekhanicheskie Polya, No. 5, pp. 44–49, 1987.  相似文献   

19.
The dynamics of nonlinear waves of the sine-Gordon equation with a spatially modulated periodic potential are studied using analytical and numerical methods. The structure and properties of four-kink multisolitons excited on two identical attracting impurities are determined. For small-amplitude oscillations, an analytical spectrum of the oscillations is obtained, which is in qualitatively agreement with the numerical results.  相似文献   

20.
Ostrovsky equation describes the propagation of long internal and surface waves in shallow water in the presence of rotation. In this model dispersion is taken into account while dissipation is neglected. Existence and nonexistence of localized solitary waves is classified according to the sign of the dispersion parameter (which can be either positive or negative). It is proved that for the case of positive dispersion the set of solitary waves is stable with respect to perturbations. The issue of passing to the limit as the rotation parameter tends to zero for solutions of the Cauchy problem is investigated on a bounded time interval.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号