首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A scheme of multiparty quantum secret sharing of classical messages (QSSCM) [Z.J. Zhang et al., Opt. Commun. 269 (2007) 418] was proposed. Lin et al. [S. Lin et al., Opt. Commun. 281 (2008) 4553] showed the last agent can obtain half of the secret in Z.J. Zhang's et al. three-party QSSCM scheme and gave an improved version. We further show the first agent and the last agent can obtain all the secret without introducing any error in Zhang's et al. multiparty QSSCM scheme by a special attack with quantum teleportation. We also present an improved version.  相似文献   

2.
A scheme of multiparty quantum secret sharing of classical messages (QSSCM) is proposed based on single photons and local unitary operations. In this scheme, eavesdropping checks are performed only twice, and one photon can generate one bit of classical secret message except those chosen for eavesdropping check; in addition, only the sender and one of the agents are required to store photons. Thus, this scheme is more practical and efficient.  相似文献   

3.
In this paper, only Bell states are employed and needed to be identified to realize the multiparty secret sharing of quantum information, where the secret is an arbitrary unknown quantum state in a qubit. In our multiparty quantum information secret sharing (QISS) scheme, no subset of all the quantum information receivers is sufficient to reconstruct the unknown state in a qubit but the entire is. The present multiparty QISS scheme is more feasible with present-day technique.  相似文献   

4.
A multiparty quantum secret sharing scheme based on Bell measurement is proposed and analyzed. In this scheme, all agents are not required to prepare entangled states or perform any local unitary operation. The security of the protocol is also analyzed. It is shown that any eavesdropper will introduce errors invariably and be detected if he tries to steal information about Trent’s secret. Moreover, because no classical bit needs to be transmitted except those for detection, the total efficiency of the scheme approaches to 100%.  相似文献   

5.
Gan Gao 《Optics Communications》2009,282(22):4464-443
We find that, in the improvement [S.J. Qin et al., Phys. Lett. A 357 (2006) 101] of the multiparty quantum secret sharing [Z.J. Zhang et al., Phys. Rev. A 71 (2005) 044301], Charlie can solely obtain Alice’s secret messages without Bob’s helps. In other words, the improved secret sharing scheme is still insecure. In the end, we further modify Qin et al. improved three-party quantum secret sharing scheme and make it really secure.  相似文献   

6.
We analyze the security of multiparty controlled quantum secure direct communication using Greenberger-Horne-Zeilinger (GHZ) state. It is shown that the receiver, using a special property of GHZ state, can illegally obtain 33.3% of the sender’s secret without any controller’s permission. The attack strategy is demonstrated in detail and an improvement of this protocol is discussed. The idea of this attack might be instructive for the cryptanalysis of quantum cryptographic protocols.  相似文献   

7.
We present a three-party quantum single-qutrit-state sharing scheme with a non-maximally entangled three-qutrit state as the quantum channel. In the scheme, the sender’s secret quantum information (i.e., the single-qutrit state) is split in such a way that it can be probabilistically reconstructed through introducing an auxiliary qutrit and performing appropriate operations provided that the receivers both collaborate together. We work out the success probability and reveal the relation between the probability and the parameters characterizing the quantum channel. After this, we then briefly introduce the generalization of the three-party scheme to a more-party one.  相似文献   

8.
Jason Lin 《Optics Communications》2011,284(5):1468-1471
Recently, Shi et al. proposed a multiparty quantum secret sharing (QSS) using Bell states and Bell measurements. In their protocol, for sharing two classical bits, all parties have to possess two photons after entanglement swapping. This paper proposes an enhancement of Shi et al.'s protocol. Based on the idea that all parties (except dealer) possess two photons to share two classical bits, the qubit efficiency has further improved by removing the photons the dealer has to hold in Shi et al.'s protocol. Moreover, an insider attack is also prevented in the proposed scheme.  相似文献   

9.
In a recent paper [Chin. Phys. Lett 25(2008)1187], a quantum secret sharing scheme between multiparty and multiparty was presented. We show that the protocol is not secure because the last member in Alice's group can illegally obtain most secret messages without introducing any error. Finally, a possible way to avoid the security flaw is suggested.  相似文献   

10.
GAO Gan 《理论物理通讯》2009,52(3):421-424
We present a two-photon three-dimensional multiparty quantum secret sharing scheme. The secret messages are encoded by performing local operations. This is different from those quantum secret sharing protocols that all sharers must make a state measurement. The merit of our protocol is the high capacity.  相似文献   

11.
By using some ordered Bell states as quantum channel, we propose a protocol for multiparty quantum secret sharing of secure direct communication. The present scheme follows the ideas of dense coding and ping-pong technique. It has a high source capacity as each traveling photon carries two bits of classical secret messages, and has a high intrinsic efficiency because almost all the instances are useful. Since the continuous variable operations instead of the discrete unitary operations used usually are employed to realize the sharing controls, the security of the present protocol is therefore enhanced. Furthermore, due to existing multilevel security checking procedures, the present scheme can prevent against some usual attack strategies.  相似文献   

12.
We propose a scheme for implementing three-party quantum secure sharing via a four-particle cluster state in driven cavity QED. In our protocol, each of the two receivers can read out the sender’s secret communication message only if they choose to cooperate with each other. The protocol does not require the joint Bell-state measurement needed in the previous schemes and can considerably reduce the realization difficulty in experiment. Moreover, the cavity is only virtually excited and thus is insensitive to the cavity decay and the thermal field. The probability of success in our scheme can reach 1.0.  相似文献   

13.
The multiparty quantum secret sharing protocol [Deng et al. in Chin. Phys. Lett. 23: 1084–1087, 2006] is revisited in this study. It is found that the performance of Deng et al.’s protocol can be much improved by using the techniques of block-transmission and decoy single photons. As a result, the qubit efficiency is improved 2.4 times and only one classical communication, a public discussion, and two quantum communications between each agent and the secret holder are needed rather than n classical communications, n public discussions, and \frac3n2\frac{3n}{2} quantum communications required in the original scheme.  相似文献   

14.
An experimental feasible scheme of multiparty secret sharing of classical messages is proposed, based on a cavity quantum electrodynamic system. The secret messages are imposed on atomic Bell states initially in the sender's possession by local unitary operations. By swapping quantum entanglement of atomic Bell states, the secret messages are split into several parts and each part is distributed to a separate party. In this case, any subset of the entire party group can not read out the secret message but the entirety via mutual cooperations. In this scheme, to discriminate atomic Bell states, additional classical fields are employed besides the same highlydetuned single-mode cavities used to prepare atomic Bell states. This scheme is insensitive to the cavity decay and the thermal field, and usual joint Bell-state measurements are unnecessary.  相似文献   

15.
In a recent paper [Z.J. Zhang et al., Opt. Commun. 269 (2007) 418], a protocol of multiparty quantum secret sharing was presented. We study the security of this protocol and found that it is not secure for a dishonest agent Charlie, who can illegally elicit half of Alice’s secret message by himself. Finally a feasible improvement of this quantum secret sharing protocol is proposed.  相似文献   

16.
A novel quantum secret sharing (QSS) scheme is proposed on the basis of Chinese Remainder Theorem (CRT). In the scheme, the classical messages are mapped to secret sequences according to CRT equations, and distributed to different receivers by different dimensional superdense-coding respectively. CRT's secret sharing function,together with high-dimensional superdense-coding, provide convenience, security, and large capability quantum channel forsecret distribution and recovering. Analysis shows the security of the scheme.  相似文献   

17.
We develop a multiparty quantum secret sharing (QSS) scheme of classical messages based on arbitrary dimensional multi-particle Greenberger-Horne-Zeilinger (GHZ) states. This scheme can be implemented using only local operations, e.g. generalized Z gate and Hadamard gate, and classical communication (LOCC) between participants. The security of the present scheme against exterior eavesdropping and interior dishonest party has been analyzed and confirmed. Moreover, we discuss the possibility of successful sharing of classical messages in the realistic situation where our QSS scheme is carried out in generalized Pauli channels.  相似文献   

18.
In this paper, we propose a novel attack for the improved multiparty quantum secret sharing protocol. In this attack, all of Alice’s secret messages may be obtained by Bob without the helps of the other agents. Compared with the presented joint attack, this attack has the merit of bigger attack scope.  相似文献   

19.
We propose a (L, n)-threshold quantum secret sharing protocol of secure direct communication following some ideas of Zhang's protocol [Phys. Lett. A 342 (2005) 60] and Tokunaga et al.'s protocol [Phys. Rev. A 71 (2005) 012314]. The sender distributes the classical secret shares to his or her n agents and each agent owns a secret share in advance. The sender's secure direct communication message can be extracted by an agent subset by collaboration in such a way that at least t or more agents can obtain the secret message with the mutual assistances but any t - 1 or fewer agents cannot. In contrast to the previous multiparty quantum secret sharing protocols in which the sender's secret message can be recovered only if all the agents collaborate, our protocol is more practical and more flexible.  相似文献   

20.
A (n, n)-threshold scheme of multiparty quantum secret sharing of classical or quantum message is proposed based on the discrete quantum Fourier transform. In our proposed scheme, the secret message, which is encoded by using the forward quantum Fourier transform and decoded by using the reverse, is split and shared in such a way that it can be reconstructed among them only if all the participants work in concert. Fhrthermore, we also discuss how this protocol must be carefully designed for correcting errors and checking eavesdropping or a dishonest participant. Security analysis shows that our scheme is secure. Also, this scheme has an advantage that it is completely compatible with quantum computation and easier to realize in the distributed quantum secure computation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号