首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zinc oxide has become an important material for various applications. Commercially available zinc oxide single crystals and as-grown zinc oxide thin films have high surface roughness which has detrimental effects on the growth of subsequent layers and device performance. A chemical mechanical polishing (CMP) process was developed for the polishing of zinc oxide polycrystalline thin films. Highly smooth surfaces with RMS roughness <6 Å (as compared to the initial roughness of 26 ± 6 Å) were obtained under optimized conditions with removal rates as high as 670 Å/min. Effects of various CMP parameters on removal rate and surface roughness were evaluated. The role of pH on the polishing characteristics was investigated in detail.  相似文献   

2.
Nanostructured zinc oxide thin films were prepared by spray pyrolysis technique using Zn(NO3)2·6H2O as the precursor solution. The resulting films were investigated by X-ray diffraction and scanning electron microscopy to know crystal structure, size of crystallites and surface morphology. The films have been found to be polycrystalline zinc oxide, possessing hexagonal wurtzite crystal structure and nanocrystallite with grain size of approximately 30-35 nm. The LPG sensing performance of the films has been investigated at various concentrations of LPG in air at operating temperatures varying from 225 to 400 °C. At 325 °C the maximum responses of 46.3% and 48.9% have been observed, respectively, for concentrations of 0.8 and 1 vol% of LPG in air (1 vol% of LPG in air corresponds to 50% LEL of LPG in air). The recovery time has been found to be less than the response time for all concentrations of LPG. A possible reaction mechanism of LPG sensing has been proposed.  相似文献   

3.
Thin films of zinc oxide have been deposited by reactive pulsed laser ablation of Zn and ZnO targets in presence of a radio frequency (RF) generated oxygen plasma. The gaseous species have been deposited at several substrate temperatures, using the on-axis configuration, on Si (1 0 0). Thin films have been characterized by scanning electron microscopy, atomic force microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and infrared spectroscopy. A comparison among conventional PLD and reactive RF plasma-assisted PLD has been performed.  相似文献   

4.
The effect of annealing atmosphere, temperature and aging on the photoluminescence of pure and Li-doped ZnO thin films has been investigated. Annealing the pure ZnO in N2 and He above 800 °C results in green emission centered at ca. 500 nm; however annealing in air red-shifts the green emission to 527 nm. The visible emission of the Li-doped ZnO is found to be largely dependent on the annealing atmosphere. Warm-white photoluminescence with a broad emission band covering nearly the whole visible spectrum is obtained for the Li-doped ZnO films annealed in helium. The substitutional and interstitial extrinsic point defects created by lithium doping may mediate the relative concentration of the intrinsic defects and thereby tune the intrinsic-defect-related visible emission. The enhanced intensity ratio of near-band-edge ultraviolet emission to deep-level visible emission with aging time may be ascribed to both in-diffusion of oxygen from air and self-diffusion of oxygen interstitials to heal the oxygen vacancies during the aging process.  相似文献   

5.
Magnetization-induced effects in the symmetry properties of optical second harmonic generation (SHG) are studied in thin cobalt films. We demonstrate that the application of an external magnetic field leads to the appearance of a strong SHG azimuthal anisotropy from the isotropic Au/Co structure. Symmetry analysis of the SHG dependencies, supported by the SHG interferometry measurements, indicates that the effective magnetic and crystallographic second-order susceptibilities are both of the same order of magnitude.  相似文献   

6.
Fluorine-doped zinc oxide thin films (ZnO:F) were deposited on Si(1 0 0) substrates by the chemical spray technique (CST) from an aged-solution. The effect of the substrate temperature on the morphology and composition of the ZnO:F thin films was studied. The films were polycrystalline, with a preferential growth along the ZnO (0 0 2) plane, irrespective of the deposition temperature. The average crystal size within the films was ca. 35 nm and the morphology of the surface was found to be dependent on the substrate temperature. At low substrate temperatures irregular-shaped grains were observed, whereas at higher temperatures uniform flat grains were obtained. Elemental analysis showed that the composition of the films is close to stoichiometric ZnO and that samples contain quite a low fluorine concentration, which decreases as a function of the deposition temperature.  相似文献   

7.
Eu-doped ZnO (EZO) thin films were prepared on glass substrates at various growth temperatures by radio-frequency magnetron sputtering. The properties of deposited thin films showed a significant dependence on the growth temperature. The preferential growth orientation of all the thin films was occurred along the ZnO (002) plane. The maximum crystallite size and the minimum average transmittance in the wavelength range of 450–1100 nm were observed for the EZO thin film deposited at 25 °C. A red shift of the optical band gap was observed in the growth temperature range of 25–300 °C. The highest figure of merit, an index for evaluating the performance of transparent conducting thin films, was obtained at 200 °C of growth temperature. These results indicated that the high-quality EZO film was obtained at a growth temperature of 200 °C.  相似文献   

8.
Superhydrophobic and transparent zinc oxide (ZnO) thin films were deposited by a simple and cost effective spray pyrolysis technique (SPT) onto the glass substrates at 723 K from an aqueous zinc acetate precursor solution. The solution concentration was varied from 0.1 to 0.4 M and its effect on structural, morphological, wetting and optical properties of ZnO thin films was studied. The synthesized films were found to be polycrystalline, with preferential growth along c-axis. A slight improvement in the crystallite size and texture coefficient is observed as the concentration of the solution is increased. SEM micrographs show the uniform distribution of spherical grains of about 60-80 nm grain size. The films were specular and highly transparent with average transmittance of about 85%. The spectrum shows sharp absorption band edge at 381 nm, corresponding to optical gap of 3.25 eV. The samples of texture coefficient less than 90% and roughness less than 75 nm are hydrophobic and above these values they become superhydrophobic in nature. The hydrophobicity coupled with high transmittance is of great importance in commercial application such as transparent self-cleaning surfaces, anti-fog, anti-snow, fluid microchips and microreactors.  相似文献   

9.
Transparent conducting thin films of fluorine-doped tin oxide (FTO) have been deposited onto the preheated glass substrates of different thickness by spray pyrolysis process using SnCl4·5H2O and NH4F precursors. Substrate thickness is varied from 1 to 6 mm. The films are grown using mixed solvent with propane-2-ol as organic solvent and distilled water at optimized substrate temperature of 475 °C. Films of thickness up to 1525 nm are grown by a fine spray of the source solution using compressed air as a carrier gas. The films have been characterized by the techniques such as X-ray diffraction, optical absorption, van der Pauw technique, and Hall effect. The as-deposited films are preferentially oriented along the (2 0 0) plane and are of polycrystalline SnO2 with a tetragonal crystal structure having the texture coefficient of 6.19 for the films deposited on 4 mm thick substrate. The lattice parameter values remain unchanged with the substrate thickness. The grain size varies between 38 and 48 nm. The films exhibit moderate optical transmission up to 70% at 550 nm. The figure of merit (φ) varies from 1.36×10−4 to 1.93×10−3 Ω−1. The films are heavily doped, therefore degenerate and exhibit n-type electrical conductivity. The lowest sheet resistance (Rs) of 7.5 Ω is obtained for a typical sample deposited on 4 mm thick substrate. The resistivity (ρ) and carrier concentration (nD) vary over 8.38×10−4 to 2.95×10−3 Ω cm and 4.03×1020 to 2.69×1021 cm−3, respectively.  相似文献   

10.
Ga-doped CdS thin films, with different [Ga]/[Cd] ratios, were grown using chemical bath deposition. The effect of Ga-doping on optical properties and bandgap of CdS films is investigated. Resistivity, carrier density, and mobility of doped films were acquired using Hall effect measurements. Crystal structure as well as crystal quality and phase transition were determined using X-ray diffraction (XRD) and Micro-Raman spectroscopy. Film morphology was studied using scanning electron microscopy, while film chemistry and binding states were studied using X-ray photoelectron spectroscopy (XPS). A minimum bandgap of 2.26 eV was obtained at [Ga]/[Cd] ratio of 1.7 × 10−2. XRD studies showed Ga3+ ions entering the lattice substitutionally at low concentration, and interstitially at high concentration. Phase transition, due to annealing, as well as induced lattice defects, due to doping, were detected by Micro-Raman spectroscopy. The highest carrier density and lowest resistivity were obtained at [Ga]/[Cd] ratio of 3.4 × 10−2. XPS measurements detect an increase in sulfur deficiency in doped films.  相似文献   

11.
High quality fluorine-doped tin oxide (SnO2:F) films on glass substrates were been prepared using chemical vapor deposition (CVD) method. The electrical properties, surface morphologies, structural properties and optical properties of the films were studied by varying the freon flow rates. The structure was analyzed by X-ray diffraction (XRD). Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to study the morphology. Energy-dispersive spectroscopy (EDS) was conducted to understand the surface fluorine composition of the film. The results showed that crystalline structure of the film had a have cassiterite-like diffraction patterns with a preferred orientation of (1 1 0). Surface roughness was evaluated by atomic force microscopy, characterized by root mean square (RMS) and average value (Ra). The SnO2:F resistivity decreased as the freon flow rate increased. The films had a uniform thickness and a transmittance of 80–90% within the visible region of the spectrum.  相似文献   

12.
Molybdenum-doped iridium oxide thin films have been deposited onto corning glass- and fluorine-doped tin oxide coated corning glass substrates at 350 °C by using a pneumatic spray pyrolysis technique. An aqueous solution of 0.01 M ammonium molybdate was mixed with 0.01 M iridium trichloride solution in different volume proportions and the resultant solution was used as a precursor solution for spraying. The as-deposited samples were annealed at 600 °C in air medium for 1 h. The structural, electrical and optical properties of as-deposited and annealed Mo-doped iridium oxide were studied and values of room temperature electrical resistivity, and thermoelectric power were estimated. The as-deposited samples with 2% Mo doping exhibit more pronounced electrochromism than other samples, including pristine Ir oxide.  相似文献   

13.
14.
Optical properties of iridium oxide films fabricated by the spray pyrolysis technique (SPT) have been investigated. The transmission and reflection spectra of the sprayed films were measured by using a double-beam spectrophotometer in the wavelength range from 200 to 2500 nm. Influences of the preparative parameters; namely, substrate temperature (350-500 °C) and solution molarity (0.005-0.03 M), on the optical characteristics were examined. The solution molarity of the iridium chloride solution was varied so as to prepare iridium oxide thin films with thicknesses ranging from 160 to 325 nm. Some important characteristics of optical absorption, such as optical dispersion energies, the dielectric constant, the ratio of the number of charge carriers to the effective mass, the single oscillator wavelength, and the average value of the oscillator strength, were evaluated. The value of the refractive index was found to depend on the chemical composition as well as the degree of stoichiometry of IrO2. The values obtained for the high frequency dielectric constant through two procedures are in the range of 2.8-3.9 and 3.3-4.6 over the relevant ranges of the substrate temperature and solution molarity, respectively. Analysis of the energy dispersion curve of the absorption coefficient indicated a direct optical transition with the bandgap energy ranging between 2.61 and 2.51 eV when the substrate temperature increases from 350 to 500 °C.  相似文献   

15.
Compact and homogeneous c-axis preferred orientation of zinc oxide (ZnO) films on indium tin oxide (ITO) coated glass have been prepared electrochemically at −1.2 V vs. Ag|AgCl in a weak acidic condition from 0.06 M Zn(NO3)2 with 3 mM lactic acid (LA) added. LA was found having strong influence on the electrodeposition of c-axis preferred orientation of zinc oxide films. Other experimental variables such as deposition temperature, potential, and precursor concentration were also conducted in this article. Among these variables, it was found that precursor concentration of zinc nitrate influenced significantly on growth direction and crystal diameter of zinc oxide. Cyclic voltammetry was used to observe the electrochemistry of the deposition. Crystallinities of the films were examined by X-ray diffractometer. The morphologies of zinc oxide films were observed with a field emitting scanning electron microscope. Optical characteristics of zinc oxide layers were measured with UV-vis spectrophotometer. The band gap of the deposited zinc oxide thin films was evaluated from the Tauc relationship of (αhν)2 vs. , which was found to be 3.31 eV.  相似文献   

16.
Pure and tin doped zinc oxide (Sn:ZnO) thin films were prepared for the first time by NSP technique using aqueous solutions of zinc acetate dehydrate, tin (IV) chloride fendahydrate and methanol. X-ray diffraction patterns confirm that the films are polycrystalline in nature exhibiting hexagonal wurtzite type, with (0 0 2) as preferred orientation. The structural parameters such as lattice constant (‘a’ and ‘c’), crystallite size, dislocation density, micro strain, stress and texture coefficient were calculated from X-ray diffraction studies. Surface morphology was found to be modified with increasing Sn doping concentration. The ZnO films have high transmittance 85% in the visible region, and the transmittance is found to be decreased with the increase of Sn doping concentration. The corresponding optical band gap decreases from 3.25 to 3.08 eV. Room temperature photoluminescence reveals the sharp emission of strong UV peak at 400 nm (3.10 eV) and a strong sharp green luminescence at 528 nm (2.34 eV) in the Sn doped ZnO films. The electrical resistivity is found to be 106 Ω-cm at higher temperature and 105 Ω-cm at lower temperature.  相似文献   

17.
A simple and inexpensive spray pyrolysis technique (SPT) was employed for the synthesis of nanocrystalline zinc oxide (ZnO) thin films onto soda lime glass and tin doped indium oxide (ITO) coated glass substrates at different substrate temperatures ranging from 300 °C to 500 °C. The synthesized films were polycrystalline, with a (0 0 2) preferential growth along c-axis. SEM micrographs revealed the uniform distribution of spherical grains of about 80-90 nm size. The films were transparent with average visible transmittance of 85% having band gap energy 3.25 eV. All the samples exhibit room temperature photoluminescence (PL). A strong ultraviolet (UV) emission at 398 nm with weak green emission centered at 520 nm confirmed the less defect density in the samples. Moreover, the samples are photoelectrochemically active and exhibit the highest photocurrent of 60 μA, a photovoltage of 280 mV and 0.23 fill factor (FF) for the Zn450 films in 0.5 M Na2SO4 electrolyte, when illuminated under UV light.  相似文献   

18.
Transparent conducting indium doped zinc oxide was deposited on glass substrate by ultrasonic spray method. The In doped ZnO samples with indium concentration of 3 wt.% were deposited at 300, 350 and 400 °C with 2 min of deposition time. The effects of substrate temperature and annealing temperature on the structural, electrical and optical properties were examined. The DRX analyses indicated that In doped ZnO films have polycrystalline nature and hexagonal wurtzite structure with (0 0 2) preferential orientation and the maximum average crystallite size of ZnO: In before and annealed at 500 °C were 45.78 and 55.47 nm at a substrate temperature of 350 °C. The crystallinity of the thin films increased by increasing the substrate temperature up 350 °C, the crystallinity improved after annealing temperature at 500 °C. The film annealed at 500 °C and deposited at 350 °C show lower absorption within the visible wavelength region. The band gap energy increased from Eg = 3.25 to 3.36 eV for without annealing and annealed films at 500 °C, respectively, indicating that the increase in the transition tail width. This is due to the increase in the electrical conductivity of the films after annealing temperature.  相似文献   

19.
In2S3 films have been chemically deposited on ITO coated glass substrates by chemical bath deposition, using different deposition times and precursor concentrations. The bilayers are intended for photovoltaic applications. Different characterization methods have been employed: optical properties of the films were investigated from transmittance measurements, structural properties by XRD and micro-Raman, and surface morphology by SEM microscopy analysis. Also, the direct and indirect band-gaps and the surface gap states were studied with surface photovoltage spectroscopy (SPS). We proposed that electronic properties of the In2S3 samples are controlled by two features: shallow tail states and a broad band centred at 1.5 eV approximately. Their relation with the structure is discussed, suggesting that their origin is related to defects created on the S sub-lattice, and then both defects are intrinsic to the material.  相似文献   

20.
The nanoindentation characterizations and mechanical properties of fluorine-doped tin oxide (SnO2:F) films deposited on glass substrates, using chemical vapor deposition (CVD) method, were studied, which included the effects of the indentation loads, the loading time and the hold time on the thin film. The surface roughness, fractal dimension and frictional coefficient were also studied by varying the freon flow rates. X-ray diffraction (XRD), atomic force microscopy (AFM) and frictional force microscopy (FFM) were used to analyze the morphology of the microstructure. The results showed that crystalline structure of the film had a high intensity (1 1 0) peak orientation, especially at a low freon flow rate. According to the nanoindentation records, the Young's modulus ranged from 62.4 to 75.1 GPa and the hardness ranged from 5.1 to 9.9 GPa at a freon flow rate of 8000 sccm. The changes in measured properties were due to changing loading rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号