首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Psychophysical single-pulse forward-masking (SPFM) recovery functions were measured for three electrodes in each of eight subjects with the nucleus mini-22 cochlear implant. Masker and probe stimuli were single 200-micros/phase biphasic current pulses. Recovery functions were measured at several masker levels spanning the electric dynamic range of electrodes chosen from the apical, middle, and basal regions of each subject's electrode array. Recovery functions were described by an exponential process in which threshold shift (in microA) decreased exponentially with increasing time delay between the masker and probe pulses. Two recovery processes were observed: An initial, rapid-recovery process with an average time constant of 5.5 ms was complete by about 10 ms. A second, slow-recovery process involved less masking than the rapid-recovery process but encompassed much longer time delays, sometimes as long as several hundred milliseconds. Growth-of-masking slopes for the rapid process depended upon time delay, as expected in an exponential recovery process. Unity slopes were observed at a time delay of 0 ms, whereas progressively shallower slopes were observed at time delays of 2 ms and 5 ms. Many recovery functions demonstrated nonmonotonicities or "facilitation" at very short masker-probe delays (1-2 ms). Such nonmonotonicities were usually most pronounced at low masker levels. Time constants for the rapid-recovery process did not vary systematically with masker level or with electrode location along the implanted array. Most subjects demonstrated rapid-recovery time constants less than 7 ms; however, the subject with the longest duration of deafness prior to implantation exhibited clearly prolonged time constants (9-24 ms). Time constants obtained on basal electrodes were inversely related to word recognition scores.  相似文献   

2.
Psychophysical pulse-train forward-masking (PTFM) recovery functions were measured in fifteen subjects with the Nucleus mini-22 cochlear implant and six subjects with the Clarion cochlear implant. Masker and probe stimuli were 500-Hz trains of 200- or 77-micros/phase biphasic current pulses. Electrode configurations were bipolar for Nucleus subjects and monopolar for Clarion subjects. Masker duration was 320 ms. Probe duration was either 10 ms or 30 ms. Recovery functions were measured for a high-level masker on a middle electrode in all 21 subjects, on apical and basal electrodes in 7 of the Nucleus and 3 of the Clarion subjects, and for multiple masker levels on the middle electrode in 8 Nucleus subjects and 6 Clarion subjects. Recovery functions were described by an exponential process in which threshold shift (in microA) decreased exponentially with increasing time delay between the offset of the masker pulse train and the offset of the probe pulse train. All but 3 of the 21 subjects demonstrated recovery time constants on a middle electrode that were less than 95 ms. The mean time constant for these 18 subjects was 54 ms (s.d. 17 ms). Three other subjects tested on three electrodes exhibited time constants larger than 95 ms from an apical electrode only. Growth-of-masking slopes depended upon time delay, as expected from an exponential recovery process, i.e., progressively shallower slopes were observed at time delays of 10 ms and 50 ms. Recovery of threshold shift (in microA) for PTFM in electrical hearing behaves inthe same way as recovery of threshold shift (in dB) for pure-tone forward masking in acoustic hearing. This supports the concept that linear microamps are the electrical equivalent of acoustic decibels. Recovery from PTFM was not related to speech recognition in a simple manner. Three subjects with prolonged PTFM recovery demonstrated poor speech scores. The remaining subjects with apparently normal PTFM recovery demonstrated speech scores ranging from poor to excellent. Findings suggest that normal PTFM recovery is only one of several factors associated with good speech recognition in cochlear-implant listeners. Comparisons of recovery curves for 10- and 30-ms probe durations in two subjects showed little or no temporal integration at time delays less than 95 ms where recovery functions have steep slopes. The same subjects exhibited large amounts of temporal integration at longer time delays where recovery slopes are more gradual. This suggests that probe detection depends primarily on detection of the final pulses in the probe stimulus and supports the use of offset-to-offset time delays for characterizing PTFM recovery in electric hearing.  相似文献   

3.
Polymer thin films have irregular transient current characteristics under constant voltage. In hydrophilic and hydrophobic polymers, the irregularity is also known to depend on the humidity absorbed by the polymer sample. Different stretched exponential models are studied and it is shown that the absorption of humidity as a function of time can be adequately modelled by a class of these stretched exponential absorption models.  相似文献   

4.
5.
An analytical model is proposed which describes the general transient behaviour of a cylindrical arc column subjected to the influence of a self generated radial convection. The model, in conjunction with data for real gases, yields a criterion for assessing the importance of radial convection in various transient arcs, and allows the influence of a variable diffusivity to be determined. In the case of a freely recovering column, having a constant diffusivity within its electrical conduction zone, the radial convection merely modifies the column time constant, whereas for a variable diffusivity the column decay becomes non exponential at later times during the recovery.  相似文献   

6.
Groups of human subjects were exposed in a diffuse sound field for 16--24 h to an octave-band noise centered at 4, 2, 1, or 0.5 kHz. Sound-pressure levels were varied on different exposure occasions. At specified times during an exposure, the subject was removed from the noise, auditory sensitivity was measured, and the subject was returned to the noise. Temporary threshold shifts (TTS) increased for about 8 h and then reached a plateau or asymptote. The relation between TTS and exposure duration can be described by a simple exponential function with a time constant of 2.1 h. In the frequency region of greatest loss, threshold shifts at asymptote increased about 1.7 dB for every 1 dB increase in the level of the noise above a critical level. Critical levels were empirically estimated to be 74.0 dB SPL at 4 kHz. 78 dB at 2 kHz, and 82 dB at 1 and 0.5 kHz. Except for the noise centered at 4.0 kHz, threshold shifts were maximal about 1/2 octave above the center frequency of the noise. A smaller second maximum was observed also at 7.0 kHz for the noise centered at 2.0 kHz, at 6.0 kHz for the noise centered at 1.0 kHz, and at 5.5 kHz for the noise centered at 0.5 kHz. After termination of the exposure, recovery to within 5 dB of pre-exposure thresholds was achieved within 24 h or less. Recovery can be described by a simple exponential function with a time constant of 7.1 h. The frequency contour defined by critical levels matches almost exactly the frequency contour defined by the E-weighting network.  相似文献   

7.
The bias stress effect in pentacene organic thin-film transistors has been investigated. The transistors utilize a thin gate dielectric based on an organic self-assembled monolayer and thus can be operated at low voltages. The bias stress-induced threshold voltage shift has been analyzed for different drain-source voltages. By fitting the time-dependent threshold voltage shift to a stretched exponential function, both the maximum (equilibrium) threshold voltage shift and the time constant of the threshold voltage shift were determined for each drain-source voltage. It was found that both the equilibrium threshold voltage shift and the time constant decrease significantly with increasing drain-source voltage. This suggests that when a drain-source voltage is applied to the transistor during gate bias stress, the tilting of the HOMO and LUMO bands along the channel creates a pathway for the fast release of trapped carriers.  相似文献   

8.
Hanson KM  Davis SK  Bardeen CJ 《Optics letters》2007,32(15):2121-2123
A fluorescence correlation spectroscopy experiment that combines two-photon excitation and a standing-wave interference pattern is presented. The experimental correlation function can be analyzed using a simple expression involving (1) an exponential decay with time constant tau(f), which reflects diffusion across the interference fringes, and (2) a longer-lived decay with time constant tau(omega), which reflects diffusion in and out of the focal spot. The diffusion of Rhodamine 110 in water and ethylene glycol is measured using this method. The ability to simultaneously measure diffusion on two different time and lengthscales makes this experiment especially useful in environments where anomalous diffusion is suspected.  相似文献   

9.
Unslanted diffraction gratings are recorded in a 900 μm thick acrylamide photopolymer by means of peristrophic multiplexing. A solid state Nd:YAG (λ = 532 nm) laser is used as the recording beam, with a total incident intensity of 5 mW/cm2, and a He-Ne laser as the reconstruction beam. The dye concentration in the photopolymer is optimized so that it does not limit the dynamic range. Nine holograms are recorded using constant exposure time scheduling and variable exposure time scheduling. From the results obtained it may be deduced that optimization of the dye allows us to work in the linear response region of the photopolymer and at the same time obtain high values of diffraction efficiency for each hologram. An exponential increase in exposure time as the number of holograms increases enables the values of diffraction efficiency to be homogenized with regard to the case of constant exposure scheduling. In this way, better use is made of the dynamic range of acrylamide hydrophilic photopolymer.  相似文献   

10.
掺铒、镱铒共掺硅酸盐玻璃1.54μm荧光寿命测量   总被引:1,自引:0,他引:1  
对自制的掺铒、镱铒共掺硅酸盐玻璃1.54μm荧光寿命进行了测量。实验结果表明:荧光衰减曲线是一条单指数曲线,与理论分析相一致,荧光寿命数量级为ms量级;在所考虑的泵浦功率范围内,两种样品的荧光寿命基本不随功率的变化而变化;荧光寿命随着样品掺铒浓度的增加呈现减小趋势,而在掺铒浓度一定的情况下随掺镱浓度的变化不明显,主要由于受激发的铒离子把能量通过间接耦合给了猝灭中心。  相似文献   

11.
Chang KT 《Ultrasonics》2003,41(6):427-436
This paper suggests a parallel resistor to reduce DC time constant and DC response time of the transient response, induced immediately after an AC voltage connected to a bolt-clamped Langevin transducer (BLT) is switched off. An equivalent circuit is first expressed. Then, an open-circuit transient response at the terminals induced by initial states is derived and measured, and thus parameters for losses of the BLT device are estimated by DC and AC time constants of the transient response. Moreover, a driving and measuring system is designed to determine transient response and steady-state responses of the BLT device, and a parallel resistor is connected to the BLT device to reduce the DC time constant. Experimental results indicate that the DC time constant greatly exceeds the AC time constant without the parallel resistor, and greatly decreases from 42 to 1 ms by a 100-kOmega parallel resistor.  相似文献   

12.
续流二极管续流瞬态反向恢复电压尖峰机理研究   总被引:1,自引:0,他引:1       下载免费PDF全文
罗毅飞  肖飞  唐勇  汪波  刘宾礼 《物理学报》2014,63(21):217201-217201
电力电子变流装置中的开关续流元件功率二极管由续流到截止转换的反向恢复过程中会在负载上产生电压尖峰,且短时续流下电压尖峰会很大,极易造成器件过压失效. 为了有效指导电力电子装置的可靠性设计,基于半导体物理和功率二极管基本结构,深入论述了PIN结构续流二极管开关瞬态工作机理,利用存储电荷的分析方法推导出二极管续流瞬态下的反向恢复电压尖峰机理及其随续流时间的变化规律:电压尖峰在短时续流下较大,随续流瞬态时间的增大而减小. 以绝缘栅双极型晶体管和续流二极管组成的两电平半桥逆变单元为例进行实验,结果表明:二极管续流瞬态发生反向恢复的电压尖峰随续流瞬态时间的增大近似呈指数规律减小,待续流电流稳定后,电压尖峰趋于常数,并最终随着续流过程的结束而进一步减小直至恒定,验证了理论分析的正确性. 对完善续流二极管反向恢复机理以及提高电能变换装置的可靠性具有一定的理论意义和应用价值. 关键词: 续流二极管 正向导通 反向恢复 电导率调制  相似文献   

13.
The properties of quintessence are examined through the study of the variation of the electromagnetic coupling. We consider two simple quintessence models with a modified exponential potential and study the parameter space constraints derived from the existing observational bounds on the variation of the fine structure constant and the most recent Wilkinson Microwave Anisotropy Probe observations.  相似文献   

14.
Temporal coarse graining was applied to the dynamical variables of a semiconductor laser with optical feedback. The chaotic low frequency fluctuations obtained in numerical and experimental data are shown to have properties of a self-excitable deterministic system. External exciting noise is replaced by the ultrafast chaotic oscillations of the system. A low dimensional coarse-grained phase space is defined and time constants are introduced and measured for the exponential drop and recovery of the randomly excited equally shaped spikes.  相似文献   

15.
Ultrafast optical response in the films of poly(3-dodecylthiophene) (P3DT) and blue-and red-phase polydiacetylenes (PDA-4BCMU) has been investigated by femtosecond absorption and picosecond luminescence spectroscopies. Several nonlinear optical processes, i.e., hole burning, Raman gain, inverse Raman scattering, and induced-frequency shift, have been observed. The relaxation processes from photoexcited free excitons to self-trapped excitons (STEs) has been observed. The time constant is estimated as 140±40 fs in the blue-phase PDA-4BCMU and 100±50 fs in P3DT. The generated unthermalized STEs thermalize with the time constant of about 1 ps. The STEs in the blue-phase PDA-4BCMU decay exponentially with lifetime of 1.6±0.1 ps at 290 K and 2.1±0.2 ps at 10 K. The decay curves in the red-phase PDA-4BCMU and P3DT are not single exponential but can be fitted to biexponential functions with time constants of slightly shorter than 1 ps and about 5 ps. These two decay time constants correspond to relaxations to the ground state, respectively, from the free exciton and unthermalized STE and from the thermalized STE.  相似文献   

16.
Data mining is performed using genetic algorithm on artificially generated time series data with short memory. The extraction of rules from a training set and the subsequent testing of these rules provide a basis for the predictions on the test set. The artificial time series are generated using the inverse whitening transformation, and the correlation function has an exponential form with given time constant indicative of short memory. A vector quantization technique is employed to classify the daily rate of return of this artificial time series into four categories. A simple genetic algorithm based on a fixed format of rules is introduced to do the forecasting. Comparing to the benchmark tests with random walk and random guess, genetic algorithms yield substantially better prediction rates, between 50% to 60%. This is an improvement compared with the 47% for random walk prediction and 25% for random guessing method. Received 29 August 2000  相似文献   

17.
Temporal masking curves were obtained from 12 normal-hearing and 16 hearing-impaired listeners using 200-ms, 1000-Hz pure-tone maskers and 20-ms, 1000-Hz fixed-level probe tones. For the delay times used here (greater than 40 ms), temporal masking curves obtained from both groups can be well described by an exponential function with a single level-independent time constant for each listener. Normal-hearing listeners demonstrated time constants that ranged between 37 and 67 ms, with a mean of 50 ms. Most hearing-impaired listeners, with significant hearing loss at the probe frequency, demonstrated longer time constants (range 58-114 ms) than those obtained from normal-hearing listeners. Time constants were found to grow exponentially with hearing loss according to the function tau = 52e0.011(HL), when the slope of the growth of masking is unity. The longest individual time constant was larger than normal by a factor of 2.3 for a hearing loss of 52 dB. The steep slopes of the growth of masking functions typically observed at long delay times in hearing-impaired listeners' data appear to be a direct result of longer time constants. When iterative fitting procedures included a slope parameter, the slopes of the growth of masking from normal-hearing listeners varied around unity, while those from hearing-impaired listeners tended to be less (flatter) than normal. Predictions from the results of these fixed-probe-level experiments are consistent with the results of previous fixed-masker-level experiments, and they indicate that deficiencies in the ability to detect sequential stimuli should be considerable in hearing-impaired listeners, partially because of extended time constants, but mostly because forward masking involves a recovery process that depends upon the sensory response evoked by the masking stimulus. Large sensitivity losses reduce the sensory response to high SPL maskers so that the recovery process is slower, much like the recovery process for low-level stimuli in normal-hearing listeners.  相似文献   

18.
We have investigated the origin of room temperature photoluminescence from ion-beam synthesized Ge nanocrystals (NCs) embedded in SiO2 using steady state and time-resolved photoluminescence (PL) measurements. Ge NCs of diameter 4-13 nm were grown embedded in a thermally grown SiO2 layer by Ge+ ion implantation and subsequent annealing. Steady state PL spectra show a peak at ∼2.1 eV originating from Ge NCs and another peak at ∼2.3 eV arising from ion-beam induced defects in the SiO2 matrix. Time-resolved PL studies reveal double exponential decay dynamics on the nanoseconds time scale. The faster component of the decay with a time constant τ1∼3.1 ns is attributed to the nonradiative lifetime, since the time constant reduces with increasing defect density. The slower component with time constant τ2∼10 ns is attributed to radiative recombination at the Ge NCs. Our results are in close agreement with the theoretically predicted radiative lifetime for small Ge NCs.  相似文献   

19.
Antiproton (ˉp) and antilambda (ˉΛ) production has been measured for minimum bias in p+A collisions and central A1+ A2 collisions at the CERN-SPS by the collaborations NA35/49 and NA44. The measurements are extrapolated from rapidity distributions to absolute minimum bias cross sections. It is shown that the ˉp cross sections divided by A1· A2 follow an exponential trend as a function of a characteristic length obtained from a Glauber type absorption model, while the ˉΛ cross sections divided by A1· A2 are constant. The exponential trend also holds for ˉp production at the lower energies of the Brookhaven AGS. A discussion of the physics interpretation of the established trends in terms of an effective absorption cross section is presented. Received: 15 July 1999 / Revised version: 10 November 1999  相似文献   

20.
The density of singly ionized chromium shortly before and after forced extinction of vacuum arcs between chromium-copper electrodes was measured by laser-induced fluorescence for 2- and 10-mm contact gaps and currents between 200 A and 1 kA. In all cases studied, the ion density was constant before ramping down to the current and decayed exponentially after current zero. The ion density at current zero was found to be lower and to decay faster for a short gap than for a longer one, clearly indicating the effect of the contact separation on the charge carrier density. The variation of the time constant for the ion density decay with contact separation is closely analogous to the influence of contact separation on the recovery time of a switch gap. Furthermore, the recovery of dielectric strength of a chromium-copper gap proceeds on the same timescale as the decay of the density of singly ionized chromium. Both of these findings confirm that the ion density has a strong impact on the recovery of a vacuum gap  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号