首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Based on the extended Huygens-Fresnel principle, the mutual coherence function of quasi-monochromatic electromagnetic Gaussian Schell-model (EGSM) beams propagating through turbulent atmosphere is derived analytically. By employing the lateral and the longitudinal coherence length of EGSM beams to characterize the spatial and the temporal coherence of the beams, the behavior of changes in the spatial and the temporal coherence of those beams is studied. The results show that with a fixed set of beam parameters and under particular atmospheric turbulence model, the lateral coherence of an EGSM beam reaches its maximum value as the beam propagates a certain distance in the turbulent atmosphere, then it begins degrading and keeps decreasing along with the further distance. However, the longitudinal coherence length of an EGSM beam keeps unchanging in this propagation. Lastly, a qualitative explanation is given to these results.  相似文献   

2.
Xinyue Du 《Optics Communications》2009,282(10):1993-24711
A kind of array beam named the correlated radial stochastic electromagnetic array beam that is generated by an electromagnetic Gaussian Schell-model source is introduced by use of tensor method. The analytical expression for the cross-spectral density matrix of this array beam propagating through the turbulent atmosphere and in free space is obtained after performing vector integration. Some typical numerical calculations are illustrated for the changes in the spectral density, spectral degree of polarization, and spectral degree of coherence of the beam on propagation. We find that the atmospheric turbulence can destroy the correlated effect among the beamlets.  相似文献   

3.
The propagation characteristics of higher-order annular Gaussian (HOAG) beams in turbulence are investigated. From a HOAG source plane excitation, the average intensity of the receiver plane is developed analytically. This formulation is verified against the previously derived HOAG beam solution in free space. The graphical outputs indicate that, upon traveling in turbulent atmosphere, the HOAG beam will undergo different stages of evolution. At intermediate propagation distances, it will attempt to concentrate the energy near the origin. In this process, the appearance of the single higher-order primary beam will be encountered. Eventually HOAG originated beam will become a pure Gaussian beam after propagating an excessive distance in the turbulent medium.  相似文献   

4.
Average relative power transmittance is evaluated, by incorporating atmospheric turbulence, for partially coherent cosh-Gaussian, cos-Gaussian, Gaussian and annular beams. For all the collimated versions of these beams, against the increasing propagation length, there is a typical trend of the decrease in the relative average power transmittance with incremental drop being much less for partially coherent cos-Gaussian beams. The change in the transmittance versus the propagation length will be similar to the corresponding collimated cases, when these beams are focused at a certain focal length. Also partially coherent beams are less sensitive to propagation length changes, except for cos-Gaussian case. Partially coherent cosh-Gaussian beams exhibit a drop in the transmittance as the displacement parameter of the beam is made larger, whereas this trend is just the opposite for partially coherent cos-Gaussian beams. When examined versus the source size, for all the four types of beams, the transmittance has a similar behavior, i.e., it becomes high at small source sizes, falling with increasing source size, and following a dip, it starts to rise, eventually approaching the plane wave limit of unity. The occurrence of the dip coincides with the smallest source size for cosh-Gaussian, with the largest for cos-Gaussian, and about the same source size for Gaussian and annular beams. In general, the average relative power transmittance of coherent beam is affected much more than the partially coherent beams against the variations in source properties.  相似文献   

5.
The closed-form expression for the angular spread of Gaussian Schell-model (GSM) array beams propagating through atmospheric turbulence is derived. It is shown that the angular spread θ sp of GSM array beams for the superposition of the cross-spectral density function is smaller than of those for the superposition of the intensity. However, the θ sp of GSM array beams for the superposition of the intensity is less sensitive to turbulence than that for the superposition of the cross-spectral density function. For the superposition of the cross-spectral density function, θ sp of GSM array beams with smaller coherence length σ 0, smaller waist width w 0, smaller beam number N, and larger separation distance x d are less affected by turbulence than of those with larger σ 0,w 0,N, and smaller x d ; while, for the superposition of the intensity, the effect of turbulence on θ sp is independent of N and x d . In addition, the angular spread is nearly the same for the two types of superposition when σ 0 or w 0 is small enough, or x d is large enough. On the other hand, it is found that there exist equivalent GSM array beams for the two types of superposition which may have the same directionality as the corresponding fully coherent Gaussian beam in free space and also in turbulence.  相似文献   

6.
Based on the cross-spectral density function of transmission theory and the unified theory of coherence and polarization, the depolarization characteristics of incompletely polarized and partially coherent laser propagation in slant atmospheric turbulence are investigated. According to extended Huygens–Fresnel principle, the analytical expressions for intensity and degree of polarization in the slant path are derived. The effects of the wavelength, the initial spot size and the transmission distance on the intensity and degree of polarization are described. The results show that a more stable distribution of the degree of polarization at the receiver is obtained with increasing wavelength for a certain receiver height. The conclusions play an important role in optical communications and target recognition.  相似文献   

7.
Congfang Si  Yixin Zhang  Jianyu Wang 《Optik》2011,122(21):1922-1926
Based on the 2 × 2 cross-spectral density matrix, the van Cittert-Zernike extended theorem is developed for the completely polarized incoherent beams propagation through the paraxial non-Kolmogorov turbulence. On the consequence of the extended theorem and the definition of general spectral degree of cross-polarization of a beam, we found that the spectral degree of cross-polarization of the resultant field is independent of the refractive index structure constant of atmospheric turbulence. We investigated the influences of the propagation distance and the distance of two detection points on the degree of coherence and the spectral degree of cross-polarization.  相似文献   

8.
The existence conditions for total reflection and the corresponding critical angle at the interface separating an isotropic medium and an indefinite metamaterial for TE- and TM-polarized electromagnetic waves are obtained. For different kinds of indefinite metamaterial, there appear different total reflection phenomena. Particularly, the anomalous total reflection in which the incident angle is smaller than the critical angle and the Brewster’s angle can be smaller than the critical angle can occur for anti-cutoff medium. Furthermore, the omnidirectional total reflection exists for the always cutoff medium and anti-cutoff medium. The total reflection depends on the thickness of indefinite metamaterial when the indefinite metamaterial is finite, and the photon tunneling phenomenon can occur when the thickness of indefinite metamaterial is smaller than wavelength.  相似文献   

9.
The propagation of an off-axis Gaussian Schell-model (GSM) beam in a turbulent atmosphere is investigated based on the extended Huygens-Fresnel integral formula. Analytical formulae for the cross-spectral density and corresponding partially coherent complex curvature tensor of an off-axis GSM beam propagating in a turbulent atmosphere are derived. Based on these formulae, the propagation properties of such kind of beam in a turbulent atmosphere are investigated in detail. Furthermore, the methods are extended to investigate the propagation properties of a partially coherent laser array beam in a turbulent atmosphere. The properties of an off-axis GSM beam and a partially coherent laser array beam in a turbulent atmosphere are closely related with the beam parameters and the structure constant of the turbulent atmosphere.  相似文献   

10.
Yingbin Zhu 《Physics letters. A》2009,373(17):1595-1598
On the basis of angular spectrum representation and the stationary-phase method, far-field expressions for generalized Stokes parameters of nonparaxial stochastic electromagnetic beams are derived, which permits us to study the changes in the ordinary Stokes parameters upon propagation, and the changes in the spectral degree of polarization of partially polarized nonparaxial stochastic electromagnetic beams. It is shown that the spectral degree of polarization changes across the section on beam propagation.  相似文献   

11.
Xinyue Du 《Optics Communications》2008,281(10):2711-2715
When random electromagnetic beams passing through axially nonsymmetrical ABCD optical systems, the analytical formula for the transformation of the elements of 2 × 2 cross-spectral density matrix is obtained with the help of vector integration. We derive analytical expressions of the spectral degree of polarization, the spectral degree of coherence, and the spectral density in any output plane z > 0. Some numerical calculations are illustrated relating to the electromagnetic Gaussian Schell-model beams propagating through such optical systems.  相似文献   

12.
A theory of electromagnetic radiometry is built on the premise that the electromagnetic generalised radiance has a tensor structure, represented by the electric, magnetic and mixed generalised radiance tensors as fundamental quantities. They allow overcoming the limitations due to the scalar generalised radiances, proposed for characterizing stationary random electromagnetic sources. Furthermore, they provide a unified framework for completely describing the energy flux and the states of spatial coherence and polarization of random electromagnetic fields. So, the fundamental quantities of both the scalar generalised radiometry and the classical radiometry or photometry are deduced as particular cases of the tensor theory. A new procedure of analysis of (second-order) correlations, subject to the accomplishment of conservation laws, is also introduced. It reveals that (1) the primary sources of the measurable radiometric quantities associated to the random electromagnetic fields in any states of spatial coherence and polarization are the individual radiators of the radiant source (the correlations of the electric and magnetic field vectors only modulate the contributions given by those radiators) and (2) there are two physical mechanisms for the transport of measurable radiometric quantities by the electromagnetic field, i.e. the propagation of the contributions from individual radiators and their redistribution over each wavefront on propagation. The term redistribution refers to the transfer of portions of the measurable quantity over the wavefronts on propagation, without change its total value over each wavefront. In this context, a physical meaning is given to the negative values of the generalised radiance, which gives new insight about the Poynting’s theory of energy transport.  相似文献   

13.
We present the interactions of the electromagnetic waves with multilayer media formed by double-negative and double-positive slabs to find the frequency response of the structure. The double-negative slabs are analytically realized by using the frequency dispersive cold plasma medium. Numerical examples are performed using an in-house developed simulation programme code. The variation of the reflectance and the transmittance with the emphasis on the plasma frequencies is observed in these examples.  相似文献   

14.
Propagation properties of coherent and partially coherent beams in atmospheric turbulence are investigated respectively by using numerical simulation It is found that a partially coherent beam has a spreading larger than a coherent beam. However, from the point view of relative beam spreading and intensity scintillation, a partially coherent beam is less affected than the corresponding coherent beam, which may be the most important virtue of partially coherent beams that could be utilized to improve the performance of laser engineering. The beam wandering is almost independent of the degree of the source coherence. More aperture averaging occurs when beam becomes more coherent.  相似文献   

15.
In this paper we study the degree of cross-polarization of a beam-like field whose cross-spectral density matrix is symmetric with respect to the permutation of its spatial arguments. Formulas were derived expressing the degree of cross-polarization in terms of the generalized Stokes parameters. With the help of an uniformly polarized quasi-homogeneous model source, the effect of degree of cross-polarization of a source on the degree of polarization of the radiated beam was demonstrated, that, two sources with same spectral degrees of coherence and polarization but with different degrees of cross-polarization can generate beams that have different spectral degrees of polarization in the far field.  相似文献   

16.
In this paper, we investigated the focal performance of the dual-closed-surface microlens arrays (DCSMAs) based on rigorous electromagnetic theory and boundary element method (BEM) in the case of TE polarization. The DCSMAs are designed with different substrate thickness and different distance between microlenses. DCSMAs designed according to different wavelengths are surveyed. The DCSMAs with different incident angles are also studied. Several focusing performance measures, such as the focal spot size, the focal position on the preset focal plane, the diffraction efficiency and the normalized transmitted power, are presented. Numerical results indicate the DCSMAs with different parameters can implement focusing beams and the focal performance of DCSMAs is easily influenced by the substrate thickness and the incident wavelength. Furthermore, the optimal thickness for the maximal diffraction efficiency of the DCSMAs is given. It is expected that the DCSMAs may be used as a parallel processing device in micro-optics systems.  相似文献   

17.
We report the experimental observation of focal shifts in partially coherent beams of Gaussian Schell-model (GSM) type focused by a circularly apertured thin lens. The relative focal shift increases as the aperture radius or the state of coherence of the GSM source decrease. The experimental results agree well with theoretical predictions.  相似文献   

18.
Xinyue Du 《Optics Communications》2008,281(24):5968-5972
Using the derived formulas for the transformation of 2 × 2 cross-spectral density matrix of the stochastic electromagnetic beams propagating through ABCD optical systems and in the turbulent atmosphere, the changes in the generalized Stokes parameters of the beams propagating under these conditions can be investigated directly. Some typical numerical calculations are illustrated relating to the electromagnetic Gaussian Schell-model beams passing through free space, focal system, dual-focus system, and the turbulent atmosphere with different structure parameters. Further extensions are also pointed out.  相似文献   

19.
The anomalous spectral behaviors of partially coherent polychromatic hollow Gaussian Schell-model beams (HGSMBs) diffracted by a slit are investigated. Besides spectral switches, asymmetrical dual-peak spectral split and multi-peak spectral split are observed. In the vicinity of the positions where spectral switches occur, flat-topped spectrum can be obtained, the bandwidth of which is adjustable by changing the transverse coherence width and the observation position. The flat-topped spectrum has potential application for creating probe beams in optical metrology systems and generating broadband optical sources in fiber optic sensor interface systems.  相似文献   

20.
Analytical formulas for the average intensity and decentered parameter of a decentered elliptical Gaussian beam (DEGB) propagating in a turbulent atmosphere are derived in a tensor form. The propagation properties of a DEGB in a turbulent atmosphere are investigated in detail, and found to be different from that in free space. Furthermore, as an application example, we investigate the propagation of a decentered elliptical flat-topped beam (DEFB) by expressing its electric field as a finite sum of DEGBs in a turbulent atmosphere. The properties of a DEGB or a DEFB in a turbulent atmosphere are closely related with the beam’s parameters and the structure constant of the turbulent atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号