首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
PET/PTT双组分弹性长丝的热收缩性能及卷曲形成机理探讨   总被引:2,自引:0,他引:2  
由于纺丝线上PET/PTT复合长丝中各组分受到的纺丝张力差异导致两组分存在潜在的热收缩性差异。从纺丝线下来的成品丝只有通过后道热处理,才能有效释放潜在的热收缩差异,获得理想、可用的卷曲弹性。通过TMA测试了PET/PTT双组分复合弹性长丝及其对应单组分纤维的热收缩性能。同样的外作用力下,PET/PTT纤维的收缩应变更接近PET纤维、远小于PTT纤维。同样预张力约0.2N下,PET/PTT、PET、PTT纤维的收缩应力依次变大。结果表明PET纤维具有较小的收缩应力和较小的收缩应变,PTT纤维具有较大的收缩应力和较高的收缩应变。这导致后道热处理过程中,PTT组分发生强烈的尺寸收缩,并带动收缩较小的PET组分位于纤维外侧并形成更为细密的卷曲。  相似文献   

2.
PET/PTT双组分弹性长丝的结晶取向结构和卷曲性能   总被引:8,自引:0,他引:8  
为研制军官礼服用PET/PTT双组分弹性长丝,在纺丝加工工艺研究的基础上,通过声速法、WAXD、DSC、Instron5566对典型工艺下的弹性长丝进行了结晶和取向结构及卷曲性能的测试分析.在可纺的前提下,PET/PTT两组分复合纺丝中,PET组分优先结晶,具有高于其单组分纤维的拉伸诱导取向和结晶;而PTT组分只有形变,其结晶度和晶区取向均低于其对应的单组分纤维.在实验条件范围内,两组分粘度差异越大,纤维的卷曲伸长率和收缩率越大、声速取向因子增加、各单组分结晶度增加;两组分质量比为50/50时,纤维有最大的卷曲伸长率和收缩率,且各单组分结晶度随该两组分含量差异的增加而减少,而声速取向变化相反;随牵伸比的增加,纤维的整体取向、各组分结晶度均有所增加,卷曲伸长和收缩率也增加.牵伸温度和定型温度对双组分纤维的结构和卷曲性能影响较小.  相似文献   

3.
采用静电纺丝法制备PET/CTS复合纳米纤维膜,并在纤维膜表面吸附一层纳米银,进一步增加纤维膜的抗菌性能.以扫描电镜(SEM)对不同配比PET/CTS所制备的纤维膜的微观形貌进行表征,结果显示w(CTS)/w(PET)为12.5%时,纤维形貌较好,平均直径为405 nm.分别对不同厚度的PET/CTS纤维膜进行力学性能、透气性能以及空气过滤性能测试,结果表明纺丝时间为7 h时,纤维膜具有较好的性能,其弹性模量为48.15 MPa、断裂伸长率183.30%、拉伸断裂应力2.11 MPa、拉伸强度2.49 MPa、拉伸屈服应力1.23 MPa、最大力1.38 N,阻气值为3.99 k Pa·S/m,过滤效率为99.55%,压降为621.32 Pa.吸附银离子实验表明,最佳GA交联浴配比为GA(vol%)=3.5%.紫外可见光谱(UV)及透射电镜(TEM)表征证明,有10 nm左右纳米银生成.抑菌实验表明,载银PET/CTS复合纳米纤维膜对金黄色葡萄球菌(S.a.)和大肠杆菌(E.coli.)的杀菌率分别为99.97%和99.99%.  相似文献   

4.
采用静电纺丝技术分别制备了无规排列和高度取向排列的聚对苯二甲酸乙二醇酯(PET)和PET/CA(柠檬酸)4种纤维膜,对它们的润湿性能和力学性能进行了研究,同时研究了纤维膜厚度对膜的力学性能的影响.研究结果表明,与无规排列的PET纤维膜相比,取向排列的PET纤维膜沿纤维取向方向的力学性能有了很大的提高,而断裂伸长率略有下降;加入柠檬酸(CA)后,PET/CA复合纤维膜的表面水接触角从132.3!减少到0!,且取向排列的纤维膜比无规排列的纤维膜更易润湿;无规排列的复合纤维膜的力学性能因加入CA而大幅下降,取向排列的PET/CA纤维膜沿纤维取向方向的力学性能下降较小,而无规排列的PET/CA纤维膜的断裂伸长率从284.1%增加到444.5%.无规排列纤维膜的力学性能随膜厚度的增加先提高,后来又下降,而取向排列的纤维膜沿纤维取向方向的力学性能随膜厚度增加而单调增加.  相似文献   

5.
随着空气污染的日益严重,高效低阻空气过滤材料的开发成为研究热点.为了提高聚丙烯(PP)熔喷过滤材料的过滤性能,本文以PP熔喷过滤材料为基材,聚偏氟乙烯-六氟丙烯(PVDF-HFP)为皮层,聚间苯二甲酰间苯二胺(PMIA)为芯层,采用同轴静电纺丝技术制备了具有高效低阻特性的PP/PMIA@PVDF-HFP纳米纤维复合滤材,研究了纺丝工艺和热处理等对滤材形貌、孔径、透气性和过滤性能的影响.在高温作用下,耐高温性能优异的芯层组分PMIA可以保持原有形态,而低熔点的皮层组分PVDF-HFP将会熔融,进而将纳米纤维粘结在一起.因此,通过热处理的方式可以实现纳米纤维膜孔结构的调控,并提高复合纤维滤材对空气中微小颗粒物的拦截能力.结果表明,当静电纺丝时间为60 min时,热处理后PP/PMIA@PVDF-HFP纳米纤维复合滤材孔隙率稳定在约75%,平均孔径为2.58μm,透气率为132.74 mm/s;对粒径<2.5μm的固体颗粒物(PM2.5)的过滤效率可达97.67%,过滤阻力仅为45.1 Pa,综合性能较优,且在不同风速、不同颗粒物浓度和长时间使用等条件下仍能保持优异的过滤性能.  相似文献   

6.
静电纺丝技术就是通过带电聚合物溶液或熔体的喷射来制备纳米纤维,是一种制备纳米纤维材料简单有效的技术。醋酸纤维素(CA)易溶于有机溶剂,常作为纤维素的替代材料应用于静电纺丝领域。本文总结了近年来国内外采用静电纺丝技术制备CA复合纳米纤维的研究新进展,重点介绍了CA/CNTs复合纳米纤维、CA/金属粒子复合纳米纤维、CA/金属氧化物复合纳米纤维、CA基载药复合纳米纤维、CA/PAN复合纳米纤维、CA/PVA复合纳米纤维、CA/CS复合纳米纤维等CA复合纳米纤维的研究进展以及潜在的应用领域。  相似文献   

7.
为了提高海藻酸钠(SA)纤维的断裂强度和断裂伸长率, 以丙烯酸(AA)为化学交联组分, SA为离子交联组分, 聚乙烯醇(PVA)为微晶交联组分, 采用湿法纺丝和冻融循环方法制备含有PVA微晶交联点和海藻酸钠/聚丙烯酸(SA/PAA)双网络结构的海藻酸钠/聚丙烯酸/聚乙烯醇(SA/PAA/PVA)复合纤维. 通过流变性能、 力学性能、 红外光谱、 X射线衍射仪(XRD)和扫描电子显微镜(SEM)测试研究了交联剂N,N-亚甲基双丙烯酰胺(MBA)含量和PVA微晶交联对SA/PAA/PVA纺丝原液和复合纤维的结构与性能的影响. 结果表明, 当MBA质量分数为0.5%时, 纺丝原液的损耗模量(G″)最小, 可纺性最好, 复合纤维的断裂强度达到2.83 cN/dtex, 断裂伸长率达到9.38%, 比再生SA纤维分别提高了15.98%和38.96%; PVA冷冻之后形成微晶交联点并且PAA和PVA已经复合到体系中; PAA和PVA的加入提高了复合纤维的结晶度; 复合纤维的表面形貌趋于光滑和规整, 纤维断面更加致密.  相似文献   

8.
汇总了膜裂、乳液纺丝、糊料挤出等三种聚四氟乙烯(PTFE)纤维成型方法。研发了强剪切挤出口模等六项技术控制裂膜纤维的细度、均匀性、力学性能、热收缩率,形成工业化裂膜长丝和短纤加工技术;提出PTFE/PVA(聚乙烯醇)共混、利用硼酸与PVA的络合特性制备凝胶纺丝液并纺制PTFE短纤的思路,研究了烧结和牵伸对纤维的影响,形成凝胶法PTFE短纤加工技术;根据PTFE树脂剪切作用下原纤化特征,设计了导入口、导入段锥度和毛细孔长径比控制初生纤维强度的糊料挤出口模,筛选了润滑剂,形成糊料挤出PTFE长丝加工技术。  相似文献   

9.
四氧化三铁中空/螺旋纤维的制备及形成机理   总被引:3,自引:1,他引:2  
以柠檬酸铁为原料, 利用有机凝胶热分解法在低升温速率下热处理并还原制备了Fe3O4中空/螺旋纤维. 通过TG/DTA, XRD和SEM对前驱体纤维热分解过程、产物物相和形貌进行了表征. 结果表明, 产物主要由80%的中空纤维和20%的螺旋纤维组成, 其中中空纤维的直径为6 μm左右, 壁厚为500 nm. 螺旋纤维的直径为6~10 μm, 螺旋纤维是由具有不同旋向的宽度为4~6 μm的带状纤维卷曲而成, 带状纤维的外表面壳层均匀密实, 其厚度为600 nm左右, 而内层疏松且不规则. Fe3O4中空/螺旋纤维是由晶粒尺寸为60 nm左右的纳米颗粒构成, 并有少量的介孔. 分析了中空纤维和螺旋纤维的形成机理, 直径较小的前驱体纤维在热处理过程中内部凝胶向表层迁移收缩形成中空纤维; 螺旋纤维是由直径较大的前驱体纤维在热处理过程中产生的强大的热应力导致纤维产生螺旋破裂形成的.  相似文献   

10.
PLGA/明胶共混体系的静电纺丝研究   总被引:3,自引:1,他引:2  
采用静电纺丝技术制备了聚乳酸乙醇酸(PLGA)/明胶(Gt)的复合超细纤维, 考察了溶液浓度、电压及流速对纤维形貌的影响. 研究了不同明胶比例的纤维膜的微观形貌和干湿态的力学性能. 结果表明, 在溶液浓度0.12 g/mL, 电压7.5 kV, 流速0.8 mL/h条件下, 所得PLGA/Gt复合纤维直径较小, 粗细较均匀且缺陷少. 含有明胶的复合纤维直径远小于PLGA单纺纤维直径, 明胶的加入降低了膜的拉伸强度和断裂伸长率, 提高了膜的亲水性. 经PBS浸泡后, 复合膜的弹性得到加强. 明胶质量分数为5%和10%时, 纤维直径分布较窄, 当明胶的质量分数增加至15%时, 纤维的直径分布变宽.  相似文献   

11.
PTT/PET共混体系晶体形态与结晶性能的研究   总被引:1,自引:0,他引:1  
用差示扫描量热仪(DSC)、广角X射线衍射(WAXD)和正交偏光显微镜研究了聚对苯二甲酸丙二酯(PTT)和聚对苯二甲酸乙二酯(PET)共混体系的晶体形态与结晶性能.结果表明,共混体系结晶性能与PTT的含量有关.PET的加入,使共混体系的球晶尺寸减小.球晶完善性降低.当PTT含量为40wt%~60wt%时,共混物分别出现了双重熔融峰和双重结晶峰.双重熔融峰是加热过程中熔融重结晶造成的,双重结晶峰说明不完善的晶体产生的次级结晶.  相似文献   

12.
热处理过程中聚酯长丝的形态变化   总被引:1,自引:0,他引:1  
在自制的红外三因素处理机上~[1],用红外加热在定张力下对聚对苯二甲酸乙二酯(PET)成品长丝进行热处理(二次定型)。用X-光衍射(WAXS)、X-光小角散射(DAXS)、红外光谱(IR)和双折射方法,测定样品的热收缩、结晶度、晶粒尺寸和取向、非晶取向、长周期和链折叠带强度。所得形态参数的变化表明,处理温度在200℃以上时,张力不再阻碍链折叠。不同定张力样品的形态研究表明,存在阻碍链折叠的某个张力转折值。本文条件下,这个张力值为f_(critical)=0.066g/dtex 。张力大于此值,链折叠过程受阻。  相似文献   

13.
Stretchable conductive fibers offer unparalleled advantages in the development of wearable strain sensors for smart textiles due to their excellent flexibility and weaveability.However,the practical applications of these fibers in wearable devices are hindered by either contradictory properties of conductive fibers(high stretchability versus high sensing stability),or lack of manufacturing scalability.Herein,we present a facile approach for highly stretchable self-crimping fiber strain sensors based on a polyether-ester(TPEE)elastomer matrix using a side-by-side bicomponent melt-spinning process involving two parallel but attached components with different shrinkage properties.The TPEE component serves as a highly elastic mechanical support layer within the bicomponent fibers,while the conductive component(E-TPEE)of carbon black(CB),multiwalled carbon nanotubes(MWCNTs)and TPEE works as a strain-sensitive layer.In addition to the intrinsic elasticity of the matrix,the TPEE/E-TPEE bicomponent fibers present an excellent form of elasticity due to self-crimping.The self-crimping elongation of the fibers can provide a large deformation,and after the crimp disappears,the intrinsic elastic deformation is responsible for monitoring the strain sensing.The reliable strain sensing range of the TPEE/E-TPEE composite fibers was 160%-270%and could be regulated by adjusting the crimp structure.More importantly,the TPEE/E-TPEE fibers had a diameter of 30-40 μm and tenacity of 40-50 MPa,showing the necessary practicality.This work introduces new possibilities for fiber strain sensors produced in standard industrial spinning machines.  相似文献   

14.
The melt-crystallization and isothermal melt-crystallization kinetics of poly(ethylene terephthalate)/poly(trimethylene terephthalate) blends (PET/PTT) were investigated by differential scanning calorimetry (DSC) and polarized optical microscopy. Although PET and PTT in the binary blends are miscible at amorphous state, they will crystallize individually when cooled from the melt. In the DSC measurements, PET component with higher supercooling degree will crystallize first, and then the crystallite of PET will be the nucleating agent for PTT, which induce the crystallization of PTT at higher temperature. On the other hand, in both blends of PET80/PTT20 and PET60/PTT40, the PET component will crystallize at higher temperature with faster crystallization rate due to the dilute effect of PTT. So the commingled minor addition of one component to another helps to improve the crystallization of the blends. For blends of PET20/PTT80 and PET40/PTT60, isothermal crystallization kinetics evaluated in terms of the Avrami equation suggest different crystallization mechanisms occurred. The more PET content in blends, the fast crystallization rate is. The Avrami exponent, n = 3, suggests a three-dimensional growth of the crystals in both blends, which is further demonstrated by the spherulites formed in all blends. The crystalline blends show multiple-melting peaks during heating process.  相似文献   

15.
The spherulite morphology and crystallization behavior of poly(ethylene terephthalate) (PET)/poly(trimethylene terephthalate) (PTT) blends were investigated with optical microscopy (OM), small-angle light scattering (SALS), and small-angle X-ray scattering (SAXS). The thermal analysis showed that PET and PTT were miscible in the melt over the entire composition range. The rejected distance of non-crystallizable species, which was represented in terms of the parameter δ, played an important role in determining the morphological patterns of the blends at a specific crystallization temperature regime. The parameter δ could be controlled by variation of the composition, the crystallization temperature, and the level of transesterification. In the case of two-step crystallization, the crystallization of PTT commenced in the interspherulitic region between the grown PET crystals and proceeded until the interspherulitic space was filled with PTT crystals. The spherulitic surface of the PET crystals acted as nucleation sites where PTT preferentially crystallized, leading to the formation of non-spherulitic crystalline texture. The SALS results suggested that the growth pattern of the PET crystals was significantly changed by the presence of the PTT molecules. The lamellar morphology parameters were evaluated by a one-dimensional correlation function analysis. The blends that crystallized above the melting point of PTT showed a larger amorphous layer thickness than the pure PET, indicating that the non-crystallizable PTT component might be incorporated into the interlamellar region of the PET crystals. With an increased level of transesterification, the exclusion of non-crystallizable species from the lamellar stacks was favorable due to the lower crystal growth rates. As a result, the amorphous layer thickness of the PET crystals decreased as the annealing time in the melt state was increased.  相似文献   

16.
Hot‐air drawing method has been applied to poly(ethylene terephthalate) (PET) fibers in order to investigate the effect of strain rate on their microstructure and mechanical properties and produce high‐performance PET fibers. The hot‐air drawing was carried out by blowing hot air controlled at a constant temperature against an as‐spun PET fiber connected to a weight. As the hot air blew against the fibers weighted variously at a flow rate of about 90 ℓ/min, the fibers elongated instantaneously at a strain rate in the range of 2.3–18.7 s−1. The strain rate in the hot‐air drawing increased with increasing drawing temperature and applied tension. When the hot‐air drawing was carried out at a drawing temperature of 220°C under an applied tension of 27.6 MPa, the strain rate was the highest value of 18.7 s−1. A draw ratio, birefringence, crystallite orientation factor, and mechanical properties increased as the strain rate increased. The fiber drawn at the highest stain rate had a birefringence of 0.231, degree of crystallinity of 44%, tensile modulus of 18 GPa, and dynamic storage modulus of 19 GPa at 25°C. The mechanical properties of fiber obtained had almost the same values as those of the zone‐annealed PET fiber reported previously. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1703–1713, 1999  相似文献   

17.
Nanofibrous composite mats were prepared by electrospinning of poly(trimethylene terephthalate), PTT, with multi-walled carbon nanotubes (PTT/MWCNT). Trifluoroacetic acid (TFA) and methylene chloride (MC) with volume ratio of 50/50 is a good solvent for PTT and was used as the electrospining solution. Scanning electron microscopy was used to investigate the morphology of electrospun (ES) nanofibers with 0, 0.2, 1.0, or 2.0 wt% of MWCNTs. Crystal structure of the ES mats was determined from wide angle X-ray diffraction. Thermal properties were investigated using heat capacity measurements from differential scanning calorimetry (DSC) using the three-runs method for baseline correction, heat flow amplitude calibration, and sample heat capacity determination. A model comprising three phases, a mobile amorphous fraction (MAF), rigid amorphous fraction (RAF), and crystalline fraction (C), is appropriate for ES PTT/MWCNT fibers. The phase fractions, W i (for i = RAF, MAF or C) were determined by DSC. Crystallinity decreases very slightly with the amount of MWCNT. At the same time, a large increase in RAF was observed: W RAF of PTT fiber with 2% MWCNT is twice that of neat PTT fiber. The addition of MWCNTs enhanced the PTT chain alignment and increased RAF as a result. Changes of vibrational band absorbance at 1358 and 1385 cm−1, corresponding to characteristic groups, were obtained with infrared spectroscopy. The increased absorbance at 1358 cm−1 and decreased absorbance at 1385 cm−1, with the addition of MWCNTs, strongly supports the three-phase model for ES PTT/MWCNT nanocomposites.  相似文献   

18.
To investigate the mechanism of fiber structure development for poly(trimethylene terephthalate) (PTT) in high‐speed spinning, the PTT fiber was spun with take‐up speeds from 1 to 8 km/min and simultaneously birefringence and diameter in spin‐line were measured by on‐line measurement system. The orientation‐induced crystallization of PTT fiber started to be developed at 3–4 km/min, where an abrupt decrease in diameter and an increase in birefringence appeared. The birefringence increased up to 4 km/min, decreased suddenly, and then increased gradually. The sudden decrease of birefringence at 4–5 km/min might be caused by an increase of crystalline fraction due to the fact that the intrinsic crystalline birefringence of PTT is over 10 times as low as that of PET. In WAXD images, crystalline diffraction emerged faintly at 3 km/min and distinct diffraction arcs were observed at 4–5 km/min and above. The diffraction intensity increased and the tilting angle also increased with take‐up speed. The long period structure observed in SAXS pattern started to emerge at 6 km/min, and its scattering intensity increased with take‐up speed. The long period structure was ~11–12 nm long. The cold crystallization temperature in DSC thermogram shifted to lower temperature and diminished due to the orientation‐induced crystallization as take‐up speed increased, but the melting temperature hardly increased unlike PBT and PET. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 847–856, 2008  相似文献   

19.
Heat shrinking material of γ-radiation erosslinked polyethylene is widely used for various application in industry. In this study, DSC, TMA, WAXD and density measurement techniques were used to investigate the influence of MI and thermal history of LDPE on the effectiveness of network formation. Based on the results of heat stretching and heat shrinkage tests, it is found that the formation of a network as perfect as possible is indispensable to the irradiated material if good heat shrinkage property is desired. To this end, quenching technique and polyethylene with appropriate MI must be used so that an effective radiation effect will be obtained with a minimum amount of radiation dose. In spite of that the mechanical property of the irradiated polyethylene in the rubbery state is basically in agreement with the classical expression of the theory of high elasticity, only about 90% shrinkage can be reached. Besides, the heat shrinkage temperature T_s and the % shrinkage Sare both related to the radiation dose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号