首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, single-crystal γ-MnO2 nanowires have been successfully synthesized at room temperature in the absence of catalysts or templates, the diameter was found to be ca. 10–20 nm and the characteristic lengths up to several micrometers. The crystal phase of nanowires was confirmed by XRD and TEM measurements. Further, a dissolution– condensation–recrystallization process was proposed for the formation of nanowires under the room temperature condition.  相似文献   

2.
Orthorhombic Fe5(PO4)4(OH)3·2H2O single crystalline dendritic nanostructures have been synthesized by a facile and reproducible hydrothermal method without the aid of any surfactants. The influences of synthetic parameters, such as reaction time, temperature, the amount of H2O2 solution, pH values, and types of iron precursors, on the crystal structures and morphologies of the resulting products have been investigated. The formation process of Fe5(PO4)4(OH)3·2H2O dendritic nanostructures is time dependent: amorphous FePO4·nH2O nanoparticles are formed firstly, and then Fe5(PO4)4(OH)3·2H2O dendrites are assembled via a crystallization-orientation attachment process, accompanying a color change from yellow to green. The shapes and sizes of Fe5(PO4)4(OH)3·2H2O products can be controlled by adjusting the amount of H2O2 solution, pH values, and types of iron precursors in the reaction system.  相似文献   

3.
The MoS2 nanowires with diameters of 4 nm and lengths of 50 nm were synthesized by a hydrothermal method using 0.36 g MoO3 and 1.8 g Na2S as precursors in 0.4 mol/l HCl solution at 260°C. The products are characterized by XRD, XPS, TEM, HTEM and BET. Results show that the as-prepared MoS2 nanowires consist of 1–10 sulfide layers with BET surface areas of 107 m2/g. The possible reaction route and the formation mechanism of the MoS2 nanowires are discussed. The effects of exterior conditions such as pH value, temperature, concentration of precursors and additives on the particle size and morphology of MoS2 crystallites were investigated.  相似文献   

4.
CaV6O16·3H2O nanoribbons have been prepared by the hydrothermal method in the presence of sodium dodecyl sulfate (SDS) at 160°C for 10 h. X-ray diffraction pattern indicates that the sample is monoclinic phase of CaV6O16·3H2O with the lattice contents a=12.18 Å, b=3.598 Å, c=18.39 Å, β=118.03°. Field emission scanning electron microscopy shows that the nanoribbons have widths in the range of 150–500 nm, thicknesses of 30–60 nm and lengths of 500 mm X-ray photoelectron spectrum measurements further confirm the formation of the CaV6O16·3H2O phase. The formation of CaV6O16·3H2O nanoribbons is a self-assembling process, in which surfactant SDS plays the role of soft template.  相似文献   

5.
Polycrystalline Bi2Te3 nanowires were prepared by a hydrothermal method that involved inducing the nucleation of Bi atoms reduced from BiCl3 on the surface of Te nanowires, which served as sacrificial templates. A Bi–Te alloy is formed by the interdiffusion of Bi and Te atoms at the boundary between the two metals. The Bi2Te3 nanowires synthesized in this study had a length of 3–5 μm, which is the same length as that of the Te nanowires, and a diameter of 300–500 nm, which is greater than that of the Te nanowires. The experimental results indicated that volume expansion of the Bi2Te3 nanowires was a result of the interdiffusion of Bi and Te atoms when Bi was alloyed on the surface of the Te nanowires. The morphologies of Bi2Te3 are strongly dependent on the reaction conditions such as the temperature and the type and concentration of the reducing agent. The morphologies, crystalline structure and physical properties of the product were analyzed by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED) and X-ray photoelectron spectroscopy (XPS).  相似文献   

6.
Large-size single crystals of β-Ga2O3 with 1 inc in diameter have been grown by the floating zone technique. The stable growth conditions have been determined by the examination of the crystal structure. Wafers have been cut and fine polished in the (1 0 0), (0 1 0) and (0 0 1) planes. These were highly transparent in the visible and near UV, as well as electrically conductive, indicating the potential use of β-Ga2O3 as a substrate for optoelectic devices operating in the visible/near UV and with vertical current flow.  相似文献   

7.
Indium oxide (In2O3) nanobelts have been fabricated by thermal evaporation of metallic indium powders with the assistance of Au catalysts. The as-synthesized nanobelts are single-crystalline In2O3 with cubic structure, and usually tens of nanometers in thickness, tens to hundreds of nanometers in width, and several hundreds of micrometers in length. The room temperature photoluminescence spectrum of In2O3 nanobelts features a broad emission band at 620 nm, which could be attributed to oxygen deficiencies in the as-synthesized belts. The formation of In2O3 nanobelts follows a catalyst-assistant vapor—liquid–-solid growth mechanism, which enables the controlled growth of individual belts on predetermined sites.  相似文献   

8.
Novel dumbbell-like SrSO4 with hierarchical architecture was fabricated with a facile template-free aqueous solution method at room temperature. The crystallographic morphology of SrSO4 products depends mainly on the pH value of the reaction solution. The SrSO4 products exhibit a dumbbell-like hierarchical architecture at pH=3 and 5, and have a tablet-like crystallographic morphology at pH=1 when keeping other reaction parameters unchanged. The dumbbell-like SrSO4 synthesized at pH=3 has a length of 8–14 μm, and is composed of numerous well-aligned single crystalline nanoplates with an average width of 140 nm and a length of 0.7–1 μm. The Brunauer–Emmett–Teller (BET) surface area of the crystallized SrSO4 products is about 2.8 m2 g−1. A formation mechanism is proposed for the evolution process of dumbbell-like SrSO4 with hierarchical architecture.  相似文献   

9.
This paper reports the detail synthesis of a new kind of metal iodate, anhydrous (LiFe1/3)(IO3)2, from aqueous solutions. The synthesized compound shows spinal morphology and is chemical stable up to 400°C. The iodate shows paramagnetic behavior from room temperature down to 4.2 K. At room temperature, the new compound has a hexagonal structure with the lattice parameters a=5.4632(2) Å, c=5.0895(6) Å, Z=1, space group of P63.  相似文献   

10.
We describe a simple etching route for the fabrication of zinc oxalate nanowires, which can be easily converted to zinc oxide nanowires by a simple decomposition process. The zinc oxalate nanowires can be obtained in restricted conditions, for example, when a zinc foil is immersed in ethanolic or propanolic oxalic acid. Interestingly, the nanowires are not obtained in aqueous, methanolic or butanolic oxalic acid. The solubility of zinc oxalate in the solvents and position of favorable precipitation are primarily responsible for determining the morphology of zinc oxalate.  相似文献   

11.
Magnetite particles were synthesized through a process including dissolution of Fe(OH)2 and precipitation of an oxidized phase in aqueous solution. The Fe3+ ion was added at the beginning of the synthesis to accelerate the formation of magnetite, control the particle size and improve the monodispersibility. It was found that the addition of Fe3+ ion affected the nucleation and the formation of magnetite particles significantly. Magnetite nanoparticles with small particle size and narrow size distribution were obtained. Furthermore, high magnetic properties were obtained in small particle size. The particle size and magnetic properties increased through the increase of Fe2+/Fe3+ ratio.  相似文献   

12.
Single crystals of PbMg1/3Ta2/3O3 (PMT) were grown by the flux method. The PbO–Pb3O4–B2O3 system was used as a solvent. Transparent and light yellow PMT single crystals of rectangular shape and dimensions up to 10×6×4 mm3 were obtained. For the applied growth conditions only, the crystals of the perovskite structure were grown. X-ray diffraction tests showed that at room temperature PMT exhibits cubic symmetry with lattice parameter a=4.042(1) Å. Dielectric studies pointed to relaxor properties of PMT. The characteristic broad and frequency-dependent maximum of dielectric permittivity was observed at 179.7 K (1 kHz).  相似文献   

13.
Ga2O3 nanobelts were synthesized by gas reaction at high temperature in the presence of oxygen in ammonia. X-ray diffraction and chemical microanalysis revealed that the nanostructures were Ga2O3 with the monoclinic structure. Electron microscopy study indicated the nanobelts were single crystalline with broad (0 1 0) crystallographic planes. The nanostructures grew anisotropically with the growth direction of . Statistical analysis of the anisotropic morphology of the nanobelts and electron microscopy investigation of the nanobelt tips indicated that both vapor–solid and vapor–liquid–solid mechanisms controlled the growth process. The anisotropic nature of crystallographic morphology is explained in terms of surface energy.  相似文献   

14.
Single crystals of KInO2 were obtained from a reactive potassium hydroxide flux at 700 °C. KInO2 crystallizes in the R-3m crystal system with a=3.2998(10) Å, c=18.322(10) Å and V=172.78(12) Å3. The crystal structure is isotypic with that of α-NaFeO2 and consists of the (1 1 1) layers being occupied alternately by KO6 and InO6 octahedra. Three different AInO2 structure types are discussed.  相似文献   

15.
Single crystals of rutile-type GeO2 having a structure equivalent to that of TiO2, a well-known photocatalyst, have been grown for the first time in supercritical oxygen at approximately 5 GPa and 3000 K. The obtained crystals exhibit a rectangular hollow tube structure with submicron size (cross section with sides of ∼500 nm, wall thickness of ∼20 nm, and longitudinal length of ∼5 μm). These single crystals were grown within 1 s and along the c-axis surrounded by the (1 1 0) faces. The crystal growth mechanism strongly depends on the growth mechanism of rutile-type oxides, and the extremely short growing time is an important factor in the formation of hollow tube crystals.  相似文献   

16.
A solvothermal route has been developed to synthesize K2V3O8 nanorods via the reduction of V2O5 using ethanol as the reducing agent as well as the solvent at 200°C. X-ray diffraction and selected area electron diffraction analysis revealed that the as-synthesized products are of tetragonal structure K2V3O8. Transmission electron spectroscopy image showed that the obtained K2V3O8 comprises rod-like nanocrystallites. The formation mechanism of K2V3O8 was studied.  相似文献   

17.
Impurity doping on semiconductor nanowires formed via vapor–liquid–solid (VLS) mechanism has been investigated with the intention being to control the transport properties. Here we demonstrate that an addition of excess impurity dopants induces a mesostructure of long range periodic arched-shape in Sb-doped SnO2 nanowires. The microstructural and composition analysis demonstrated the importance of the presence of impurities at the growth interface during VLS growth rather than the dopant incorporation into nanowires, indicating kinetically induced mechanisms.  相似文献   

18.
Uniform octahedral YVO4:Eu3+ microcrystals have been successfully prepared through a designed two-step hydrothermal conversion method. One-dimensional precursor Y4O(OH)9NO3 was first prepared through a simple hydrothermal process without using any surfactant, catalyst or template. Subsequently, well-defined octahedral YVO4 was synthesized at the expense of the precursor during a hydrothermal conversion process. XRD results demonstrate that the diffraction peaks of the final product can be well indexed to the pure tetragonal phase of YVO4. The SEM and TEM images indicate that the as-prepared YVO4 sample has regular octahedral shape with sharp corners and well-defined edges. The as-obtained YVO4:Eu3+ phosphor shows strong red emission under ultraviolet excitation or low-voltage electron beam excitation. Furthermore, this facile and general conversion method may be of much significance in the synthesis of many other lanthanide compounds with uniform morphology.  相似文献   

19.
A simple room temperature solution-phase method has been developed to synthesize pure phase single-crystalline hexagonal β-Co(OH)2 nanoplates. The chemical composition and morphology of the as-prepared β-Co(OH)2 nanoplates were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and selected area electron diffraction (SAED). The results indicated that the as-prepared β-Co(OH)2 nanoplates were composed of pure brucite-like β-Co(OH)2 phase with single-crystalline feature. The effect of polyethylene glycol (PEG), NH4OH, and NaOH on the morphology and size of β-Co(OH)2 nanocrystals were discussed in detail. The growth mechanism of the as-synthesized nanoplates was also discussed in detail based on the experimental results.  相似文献   

20.
The single-crystalline β-wollastonite (β-CaSiO3) nanowires were prepared via a simple hydrothermal method, in the absence of any template or surfactant using cheap and simple inorganic salts as raw materials. Xonotlite [Ca6(Si6O17)(OH)2] nanowires were first obtained after hydrothermal treatment at a lower temperature of 200 °C for 24 h, and after being calcinated at 800 °C for 2 h, xonotlite nanowires completely transformed into β-wollastonite nanowires and the wire-like structure was preserved. The synthesized β-wollastonite nanowires had a diameter of 10–30 nm, and a length up to tens of micrometers, and the single-crystalline monoclinic parawollastonite structured β-wollastonite was identified by XRD with the space group of P21/a and cell constants of a=15.42 Å, b=7.325 Å, c=7.069 Å and β=95.38°. A possible growth mechanism of β-wollastonite nanowires was also proposed. The advantages of this method for the nanowire synthesis lie in the high yield, low temperature and mild reaction conditions, which will allow large-scale production at low cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号