首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crystals of supramolecular compound {[(UO2)4O2Cl4(H2O)6](H2OC36H36N24O12)}·4H2O were obtained under conditions of hydrothermal synthesis from solutions of uranyl(vi) nitrate and cucurbituril in the presence of rubidium chloride. The crystal and molecular structure were determined by X-ray diffraction analysis.  相似文献   

2.
Samsonenko  D. G.  Sokolov  M. N.  Gerasko  O. A.  Virovets  A. V.  Lipkowski  J.  Fenske  D.  Fedin  V. P. 《Russian Chemical Bulletin》2003,52(10):2132-2139
Slow evaporation of solutions of samarium nitrate and thorium chloride in hydrochloric acid containing the macrocyclic cavitand cucurbituril (C36H36N24O12) afforded crystals of the [{Sm(H2O)5(NO3)}2(C36H36N24O12)](NO3)4·6.5H2O and [{Th(H2O)5Cl}2(C36H36N24O12)]Cl6·13H2O complexes, respectively. The [Sm(C36H36N24O12)(H2O)5(SO4)][Sm(H2O)5(SO4)2]·17H2O complex was generated upon heating (130 °C) of a mixture of samarium sulfate, cucurbituril, and water in a sealed tube. X-ray diffraction analysis demonstrated that the metal atoms in these complexes are bound to the portal oxygen atoms of the cucurbituril molecules. In addition, the portal oxygen atoms of cucurbituril are linked to the coordinated H2O molecules via hydrogen bonds.  相似文献   

3.
Gerasko  O. A.  Virovets  A. V.  Sokolov  M. N.  Dybtsev  D. N.  Gerasimenko  A. V.  Fenske  D.  Fedin  V. P. 《Russian Chemical Bulletin》2002,51(10):1800-1805
The supramolecular compounds {[W3Se4Cl3(H2O)6]2[PyHC36H36N24O12]}Cl3·18H2O (1) and {[Cl3SnMo3Se4Cl3(H2O)6][Cl3SnMo3Se4Cl2(H2O)7](C36H36N24O12)}Cl·26H2O (2) were isolated from solutions of the selenium-containing tungsten and molybdenum clusters [W3Se4(H2O)9]4+ and [Cl3SnMo3Se4(H2O)9]3+, respectively, and organic cavitand cucurbituril. X-ray diffraction analysis demonstrated that the macrocylcic cucurbituril molecule is coordinated on both sides by the cluster cations through the formation of complementary hydrogen bonds. Compound 1 has a chain structure stabilized by Se...Se interactions between the adjacent cluster cores. In compound 2, the bridging 2-selenium atoms of the cluster fragment Mo3Se4 are coordinated to the tin atom of the SnCl3 ligand, thus losing the ability to be involved in Se...Se interactions.  相似文献   

4.
The crystalline supramolecular compound of composition {(C36H36N24O12)[Mo3O4(H2O)6Cl3]2}Cl2·14H2O was obtained by slow concentration of a hydrochloric solution of the cluster aqua complex [Mo3O4(H2O)9]4+ and macrocyclic cavitand cucurbituril (C36H36N24O12). The molecular and crystal structure of the supramolecular adduct was established by X-ray diffraction analysis.  相似文献   

5.
Supramolecular compounds of the di-, trideca-, and triacontanuclear aluminum aqua hydroxo complexes, viz., [Al2(OH)2(H2O)8]4+, [Al12(AlO4)(OH)24(H2O)12]7+, and [Al30O8(OH)56(H2O)26]18+, respectively, with the organic macrocyclic cavitand cucurbit[6]uril (C36H36N24O12) were prepared by evaporation of aqueous solutions of aluminum nitrate and cucurbit[6]uril after the addition of pyridine, ammonia, KOH, or NaOH at pH 3.1–3.8. X-ray diffraction study demonstrated that the aqua hydroxo complexes are linked to the macrocycle through hydrogen bonds between the hydroxo and aqua ligands of the polycations and the portal oxygen atoms of cucurbit[6]uril. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 261—268, February, 2006.  相似文献   

6.
The review surveys the synthesis and structures of a new class of supramolecular compounds composed of the macrocyclic cavitand cucurbituril and molybdenum or tungsten chalcogenide clusters. The structural motifs of supramolecular compounds and factors influencing their formation are considered.  相似文献   

7.
The [{Pr(NO3)2(H2O)3}{Pr(NO3)(H2O)4} (C36H36N24O12)](NO3)3·4H2O and [{Nd(NO3)(H2O)4} 2(NO3@C36H36N24O12)][Nd(NO3)6] complexes were prepared by heating a mixture of lanthanide nitrates, cucurbit[6]uril, and water in a sealed tube. X-ray diffraction study demonstrated that the metal atoms in the former complex are linked to the macrocycle through tridentate coordination of the portal oxygen atoms of cucurbit[6]uril to the praseodymium(III) cation. The neodymium(III) complex is the first example of lanthanide compounds with cucurbit[6]uril belonging to coordination polymers. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1511–1517, September, 2006.  相似文献   

8.
A new heterometallic selenide-bridged 60-electron complex containing the cubane cluster fragment [M033-Se)4Pd] was prepared by heating a solution of [Mo3Se4(H2O)9]Cl4 and palladium black in 2M HCl. The cluster complex was isolated from aqueous solutions as a hydrolytically stable supramolecular adduct with macrocyclic cavitand cucurbituril. The molecular and crystal structure of {[ClPdMo3Se4(H2O)7Cl2](C36H36N24O12)Cl}·7H2O were established by X-ray diffraction analysis. Published inIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 1905–1909, November, 2000.  相似文献   

9.
Crystals of the {[Sr4(H2O)12(NO3)4](C36H36N24O12)}(NO3)4·3H2O and {[Sr2(H2O)12][Sr(H2O)3(NO3)2]2(C48H48N32O16)}(NO3)4·8H2O were prepared by slow concentration of aqueous solutions containing strontium nitrate and macrocyclic cavitands, viz., cucurbit[6]uril and cucurbit[8]uril ([C6H6N4O2] n , n = 6 and 8), respectively. According to the results of X-ray diffraction analysis, the crystal structures of these supramolecular compounds are built from polymeric chains, which consist of the alternating cucurbit[n]uril molecules and Sr2+ cations linked through the bridging aqua ligands and nitrate anions. The supramolecular compound of cucurbit[8]uril provides the first example of compounds in which this macrocycle is bound to metal aqua complexes.  相似文献   

10.
Interaction of a series of lanthanide cations (Ln3+) with a symmetrical octamethyl-substituted cucurbituril (OMeQ[6]) has been investigated. X-ray single-crystal diffraction analysis has revealed that the interaction results in the formation of adducts of OMeQ[6] with aqua complexes of lanthanide cations ([Ln(H2O)8]3+), Ln = Eu, Gd, Tb, Dy, Ho, Er, Tm and Yb in OMeQ[6]–Ln(NO3)3–H2O systems. However, no solid crystals were obtained from systems containing La, Ce, Pr, Nd and Sm. X-ray diffraction analysis has revealed that although the solid adducts fall into two isomorphous groups, there are no significant differences in the interactions between OMeQ[6] and [Ln(H2O)8]3+ complexes and in the corresponding supramolecular assemblies. Thermodynamic parameters for the interaction between OMeQ[6] and [Ln(H2O)8]3+ complexes based on isothermal titration calorimetry experiments show two periods corresponding to the above two systems, with the lighter lanthanide cations preferring to remain in solution and the heavier lanthanide cations forming crystalline solids. Electron spectroscopy has shown that interaction of OMeQ[6] with lanthanide cations could provide a means of isolating heavier lanthanide cations from their lighter counterparts.  相似文献   

11.
The supramolecular compound {[Sm(H2O)4]2(Cuc)3}Br6·44H2O (Cuc = C36H36N24O12) was synthesized. Its crystal and molecular structure was established by X-ray diffraction analysis. The binuclear complex cation {(Cuc)[Sm(H2O)4](Cuc)[Sm(H2O)4](Cuc)}6+ built from the alternating cucurbituril molecules (C36H36N24O12) and the [Sm(H2O)4]3+ aqua ions is a triple-decker nanosized (33 ) sandwich.  相似文献   

12.
Inclusion compounds of the macrocyclic cavitand cucurbit[8]uril (CB[8]) with the nickel(II) complex, {trans-[Ni(en)2(H2O)2]@CB[8]}Cl2 · 23.5H2O, the copper(II) complex, {2[Cu(dien)(bipy)(H2O)]@CB[8]}(ClO4)4 · 11H2O, and the organic molecules, 2(pyCN)@CB[8]} · 16H2O and {2(bpe)@CB[8]} · 17H2O, where bipy is 4,4′-bipyridyl, pyCN is 4-cyanopyridine, and bpe is trans-1,2-bis(4-pyridyl)ethylene, were synthesized. The inclusion compounds with organic molecules were synthesized starting from inclusion compounds of cucurbit[8]uril with cyclam and ethylenediamine complexes of copper(II) and nickel(II) by the guest exchange method, which is based on the replacement of one guest with another in the cavity of the cavitand The resulting compounds were characterized by X-ray diffraction, ESR, 1H NMR, IR, and electronic absorption spectroscopy, and electrospray mass spectrometry. Photochemically induced [2+2]-cycloaddition of two 1,2-bis(4-pyridyl)ethylene molecules included in cucurbit[8]uril was studied. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 25–34, January, 2006.  相似文献   

13.
Two supramolecular complexes,[Ni(rac-L)]3[CrO4]2[ClO4]2-4H2O (1) and [meso-H2L]0.5[VO3]-0.16H2O (2) (L= 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetra-decane),have been prepared in an aqueous solu-tion,and detected by elemental analysis,IR,TG,and single crystal X-ray diffraction analyses. Com-pound 1 shows a one-dimensional hexagonal prism formed by the hydrogen bonding interactions between the secondary amines of rac-L and CrO42-anion/water molecules. Compound 2 displays a three-dimensional structur...  相似文献   

14.
Slow evaporation in air of a lanthanum nitrate solution containing macrocyclic cavitand cucurbit[6]uril yields a complex of the composition of [La(H2O)6(X@C36H36N24O12)(NO3)](NO3)2· 6.96H2O (X = 0.5C5H5N + 0.5H2O). The complex is structurally characterized using single crystal X-ray diffraction. Lanthanum atoms are coordinated with oxygen atoms of carbonyl groups of cucurbit[6]uril portals. The compound crystallizes in the orthorhombic crystal system, space group Pnn2, unit cell parameters (150 K): a = 11.997(2) Å, b = 17.093(3) Å, c = 14.133(3) Å, V = 2899.3(10) Å3, Z = 2. Lanthanum atoms are disordered, alternative positions being related by the two-fold axis. The complex has an island structure. A pyridine molecule occupies an internal cavity of one half of cucurbit[6]uril molecules, while a water molecule occupies the other.  相似文献   

15.
Sokolov  M. N.  Dybtsev  D. N.  Virovets  A. V.  Clegg  W.  Fedin  V. P. 《Russian Chemical Bulletin》2001,50(7):1144-1147
The supramolecular complex {[Cl3InW3S4(H2O)9]2(C36H36N24O12)}Cl4·28H2O was prepared by mixing solutions of [Cl3InW3S4(H2O)9]2+ and cucurbituril in hydrochloric acid. The molecular and crystal structure of the resulting complex was established by X-ray diffraction analysis.  相似文献   

16.
The first supramolecular adduct (H3O)2[Cu(H2O)4](SO4)2·2(C30H30N20O1024(H2O) based on cucurbit[5]uril was synthesized and characterized by single crystal X‐ray diffraction analysis. In the adduct, copper ion is coordinated by four oxygen atoms from H2O. The latter links two cucurbit[5]uril molecules due to a complicated hydrogen bonding containing lattice water molecules.  相似文献   

17.
The tetranuclear lanthanide complexes {[Ln43-OH)42-OH)2(C5NH4COO)2 (H2O)4-(C36H36N24O12)2][Ln(H2O)8]1.5[Ln(H2O)6(NO3)2]0.5} (NO3)9·nH2O (Ln = Ho, Gd, or Er) were prepared by heating (130 °C) aqueous solutions of lanthanide nitrates, cucurbit[6]uril (C36H36N24O12), and 4-cyanopyridine. The tetradentate coordination of the macrocyclic cucurbit[6]uril ligands through the portals leads to the formation of sandwich compounds, in which the tetranuclear hydroxo complex is located between two macrocyclic molecules. The polynuclear complexes are additionally stabilized by the chelating effect of the isonicotinate ligands generated by hydrolysis of 4-cyanopyridine. In the complexes, the aromatic moiety of the isonicotinate ion is encapsulated into the hydrophobic inner cavity of cucurbit[6]uril. In the absence of cucurbit[6]uril, the reaction with 4-cyanopyridine produces only the polymeric complexes [Nd(C5NH4COO)3(H2O)2] and [Ln(C5NH4COO)2(H2O)4]NO3 (Ln = Pr, Sm, or Gd), whose structures were established by X-ray diffraction. In water and aqueous solutions of nonionic and cationic surfactants, irreversible changes of the tetranuclear fragment of the complex (Ln = Gd) were observed after storage for two days, whereas the anionic surfactant stabilizes the complexes. Dedicated to Academician O. M. Nefedov on the occasion of his 75th birthday. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 1885–1894, November, 2006.  相似文献   

18.
Two 4‐coordinated titanocene complexes, [(η5‐C5H5)2Ti(O,O′)(5‐NO2‐OCC6H3)] (I) and [(η5‐C5H5)2Ti(2‐OH‐5‐NO2‐O2CC6H3)2] (II), have been synthesized by reaction of Cp2TiCl2 and 5‐nitrosalicylic acid in aqueous media. Single‐crystal X‐ray analyses of I and II display the mononuclear forms of TiIV, and geometries at titanium atoms are distorted tetrahedrons, while the coordination environment at TiIV in complex I is different from that in complex II. Crystallographic characterization revealed that each of the complexes exhibits a three‐dimensional framework constructed through weak interactions, which are H‐bonding, π–π stacking and C–H·π interactions, but they differ greatly when forming the three‐dimensional network structure in both complexes. The results show that the dramatic change of conditions has great effect on the molecular structure of 5‐nitrosalicylate titanocene, thereby significantly influencing the weak interactions and the specific framework structure. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
Eight isostructural polymeric coordination compounds of the general formula [Ln(DMF)(H2O)4][Ln(DMF)2(H2O)4][M4Te4(CN)12]·DMF·nH2O (Ln = Er, Ho, Gd, or Sm; M = W or Mo) were prepared for the first time by evaporation in air of aqueous solutions containing the cuboidal telluride anionic complex of tungsten [W4Te4(CN)12]6– or molybdenum [Mo4Te4(CN)12]7–, lanthanide chlorides, and dimethylformamide. The resulting polymeric coordination complexes with layered structures were characterized by X-ray diffraction analysis and IR spectra. The magnetic susceptibilities of the gadolinium complexes were measured.  相似文献   

20.
The crystalline compounds [{CdI2(dmso)}n] ( 1 ,) and [Cd2I4(dmso)4] ( 2 ,) provide a structural sequence illustrating the conversion of CdI2 into the ionic derivatives [Cd(dmso)6]2+ [Cd(dmso)I3]2? · EtOH ( 3 ,) and [Cd(dmso)6]2+ CdI42? ( 4 ,), with increasing proportions of dmso. ( 1 ,) comprises polymeric chains with Cd centres linked by bridging iodide atoms, and alternately in four- and six-coordination. ( 2 ,) is a binuclear segment of the chains and can be seen as the structural forerunner of the ionic compounds ( 3 ,) and ( 4 ,). The ion packing in ( 3 ,) is loose, with lattice ethanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号