首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The compound {(mu-bpym)[Cu(AsPh3)2]2}(BF4)2 (1) has been prepared and studied in comparison with the triphenylphosphine analogue 2. Qualitatively, the structure of 1 with characteristically distorted copper(I) coordination caused by Ph/bpym/Ph sandwich interactions is similar to that of 2 and is approximately reproduced by DFT calculations for the model complex ions {(mu-bpym)[Cu(EMe2Ph)2]2}2+, E = P or As. In contrast, the dinuclear {(mu-bpym)[Cu(P(3-Me-C6H4)3)2]2}(BF4)2 (3) displays a distinctly less distorted metal coordination geometry due to the steric requirements of the methyl groups in the meta-tolyl substituents. The electrochemical reduction of 1 is less reversible than for the phosphine analogues; the one-electron-reduced form 1*- exhibits a broad, unresolved EPR signal at g = 2.0023. Resonance Raman spectroscopy of 1 shows the typical vibrations of the bpym ligand in agreement with the MLCT assignment of the long-wavelength transitions below 500 nm. All three dinuclear complexes exhibit luminescence at room temperature in the solid and in solution.  相似文献   

2.
We herein present the preparation, crystal structure, magnetic properties, and theoretical study of new heterobimetallic chains of formula {[Fe(III)(bpym)(CN4)]2M(II)(H2O)2}.6H2O [bpym = 2,2'-bipyrimidine; M = Zn (2), Co (3), Cu (4), and Mn (5)] which are obtained by using the building block PPh4[Fe(bpym)(CN)4].H2O (1) (PPh4+= tetraphenylphosphonium) as a ligand toward the fully solvated MII ions. The structure of complex 1 contains mononuclear [Fe(bpym)(CN)4]- anions. Compounds 2-5 are isostructural 4,2-ribbonlike bimetallic chains where the [Fe(bpym)(CN)4]- unit acts as a bis-monodenate ligand through two of its four cyanide ligands toward the M atom. Water hexamer clusters (4) and regular alternating fused six- and four-membered water rings with two dangling water molecules (2, 3, and 5) are trapped between the cyanide-bridged 4,2-ribbonlike chains. 1 and 2 behave as magnetically isolated low-spin iron(III) centers. 3 behaves as a single-chain magnet (SCM) with intrachain ferromagnetic coupling, slow magnetic relaxation, hysteresis effects, and frequency-dependent ac signals at T < 7 K). As expected for a thermally activated process, the nucleation field (Hn) in 3 increases with decreasing T and increasing v. Below 1.0 K, Hn becomes temperature independent but remains strongly sweep rate dependent. In this temperature range, the reversal of the magnetization may be induced by a quantum nucleation of a domain wall that then propagates due to the applied field. 4 and 5 are ferro- and ferrimagnetic chains respectively, with metamagnetic-like behavior (4). DFT-type calculations and QMC methodology provided a good understanding of the magnetic properties of 3-5.  相似文献   

3.
The mono- (1) and dinuclear (2) ruthenium(II) bis(2,2'-bipyridine) complexes of 2,5-di(pyridin-2-yl)pyrazine (2,5-dpp), for which the UV/Vis absorption and emission as well as electrochemical properties have been described earlier, are reinvestigated here by resonance, surface enhanced and transient resonance Raman spectroscopy together with selective deuteration to determine the location of the lowest lying excited metal to ligand charge transfer ((3)MLCT) states. The ground state absorption spectrum of both the mono- and dinuclear complexes are characterised by resonance Raman spectroscopy. The effect of deuteration on emission lifetimes together with the absence of characteristic bipy anion radical modes in the transient Raman spectra for both the mono- and dinuclear complexes bridged by the 2,5-dpp ligand confirms that the excited state is 2,5-dpp based; however DFT calculations and the effect of deuteration on emission lifetimes indicate that the bipy based MLCT states contribute to excited state deactivation. Resonance Raman and surface enhanced Raman spectroscopic (SERS) data for 1 and 2 are compared with that of the heterobimetallic complexes [Ru(bipy)(2)(2,5-dpp)PdCl(2)](2+)3 and [Ru(bipy)(2)(2,5-dpp)PtCl(2)](2+)4. The SERS data for 1 indicates that a heterobimetallic Ru-Au complex forms in situ upon addition of 1 to a gold colloid.  相似文献   

4.
Two Ga(III) complexes with main ligand, 2-(2-hydroxyphenyl)benzothiazole (HL'), namely mixed-ligand ML2X-type [GaL'2X'] (1) (HX'=acetic acid, as ancillary ligand) and the meridianal tris-chelate [GaL'3] (2) have been investigated by the density functional theory (DFT/TDDFT) level calculations. Both 1 and 2 can be presented as a similar "mixed-ligand ML2X-type" species. The molecular geometries, electronic structures, metal-ligand bonding property of Ga-O (N) (main ligand), Ga-O (N) (ancillary ligand) interactions, and the ancillary ligand effect on their HOMO-LUMO gap, their absorption/emission property, and their absorption/emission wavelengths/colors for them have been discussed in detail based on the orbital interactions, the partial density of states (PDOS), and so on. The current investigation also indicates that it is quite probable that by introduction of different ancillary ligands, a series of new mixed-ligand ML2X-type complexes for group 13 metals can be designed with their absorption/emission property and the absorption/emission wavelengths and colors being tuned.  相似文献   

5.
A photo-magnetic effect is evidenced using near-infrared light in the binuclear complex [Fe(bpym)(NCS)2]2(bpym). This compound has a 5T2g5T2g ground state and exhibits no thermal spin crossover – in contrast to the analogous [Fe(bpym)(NCSe)2]2(bpym). The estimated photo-conversion ratio is ca. 30%. By means of magnetic susceptibility measurements as well as Raman and infrared absorption spectroscopies, the nature of the photo-induced phase was established as the 5T2g1A1g state, which means that only one iron center is converted to low-spin. The photo-induced state was completely converted back to the ground state either by visible light excitation or by heating.  相似文献   

6.
The reaction of 2,3-di(2-pyridyl)-5,6-diphenylpyrazine (dpdpz) with K(2)PtCl(4) in a mixture of acetonitrile and water afforded mono-Pt complex (dpdpz)PtCl(2)4 in good yield, with two lateral pyridine nitrogen atoms binding to the metal center. Two types of Ru(II)-Pt(II) heterodimetallic complexes bridged by dpdpz, namely, [(bpy)(2)Ru(dpdpz)Pt(C≡CC(6)H(4)R)](2+) (7-9, R = H, NMe(2), or Cl, respectively) and [(tpy)Ru(dpdpz)Pt(C≡CPh)] (+) (12), were then designed and prepared, where bpy = 2,2'-bipyridine and tpy = 2,2';6',2'-terpyridine. In both cases, the platinum atom binds to dpdpz with a C(∧)N(∧)N tridentate mode. However, the coordination of the ruthenium atom with dpdpz could either be noncyclometalated (N(∧)N bidentate) or cyclometalated (C(∧)N(∧)N tridentate). The electronic properties of these complexes were subsequently studied and compared by spectroscopic and electrochemical analyses and theoretical calculations. These complexes exhibit substantial absorption in the visible to NIR (near-infrared) region because of mixed MLCT (metal-to-ligand-charge-tranfer) transitions from both the ruthenium and the platinum centers. Complexes 7 and 9 were found to emit NIR light with higher quantum yields than those of the mono-Ru complex [(bpy)(2)Ru(dpdpz)](2+) (5) and bis-Ru complex [(bpy)(2)Ru(dpdpz)Ru(bpy)(2)](4+) (13). However, no emission was detected from complex 8 or 12 at room temperature in acetonitrile.  相似文献   

7.
Hsieh CH  Hsu IJ  Lee CM  Ke SC  Wang TY  Lee GH  Wang Y  Chen JM  Lee JF  Liaw WF 《Inorganic chemistry》2003,42(12):3925-3933
The preparation of complexes trans-[Ni(-SeC(6)H(4)-o-NH-)(2)](-) (1), cis-[Ni(-TeC(6)H(4)-o-NH-)(2)](-) (2), trans-[Ni(-SC(6)H(4)-o-NH-)(2)](-) (3), and [Ni(-SC(6)H(4)-o-S-)(2)](-) (4) by oxidative addition of 2-aminophenyl dichalcogenides to anionic [Ni(CO)(SePh)(3)](-) proves to be a successful approach in this direction. The cis arrangement of the two tellurium atoms in complex 2 is attributed to the intramolecular Te.Te contact interaction (Te.Te contact distance of 3.455 A). The UV-vis electronic spectra of complexes 1 and 2 exhibit an intense absorption at 936 and 942 nm, respectively, with extinction coefficient epsilon > 10000 L mol(-)(1) cm(-)(1). The observed small g anisotropy, the principal g values at g(1) = 2.036, g(2) = 2.062, and g(3) = 2.120 for 1 and g(1) = 2.021, g(2) = 2.119, and g(3) = 2.250 for 2, respectively, indicates the ligand radical character accompanied by the contribution of the singly occupied d orbital of Ni(III). The X-ray absorption spectra of all four complexes show L(III) peaks at approximately 854.5 and approximately 853.5 eV. This may indicate a variation of contribution of the Ni(II)-Ni(III) valence state. According to the DFT calculation, the unpaired electron of complex 1 and 2 is mainly distributed on the 3d(xz)() orbital of the nickel ion and on the 4p(z)() orbital of selenium (tellurium, 5p(z)()) as well as the 2p(z)() orbital of nitrogen of the ligand. On the basis of X-ray structural data, UV-vis absorption, electron spin resonance, magnetic properties, DFT computation, and X-ray absorption (K- and L-edge) spectroscopy, the monoanionic trans-[Ni(-SeC(6)H(4)-o-NH-)(2)](-) and cis-[Ni(-TeC(6)H(4)-o-NH-)(2)](-) complexes are appositely described as a resonance hybrid form of Ni(III)-bis(o-amidochalcogenophenolato(2-)) and Ni(II)-(o-amidochalcogenophenolato(2-))-(o-iminochalcogenobenzosemiquinonato(1-) pi-radical; i.e., complexes 1 and 2 contain delocalized oxidation levels of the nickel ion and ligands.  相似文献   

8.
A robust reversed phase ion-pairing RP-HPLC method has been developed for the unambiguous speciation and quantification of all possible homoleptic and heteroleptic octahedral platinum(IV) [PtCl(6-n)Br(n)](2-) (n=0-6) as well as the corresponding platinum(II) [PtCl(4-n)Br(n)](2-) (n=0-4) complex anions using UV/Vis detection. High resolution (195)Pt NMR in more concentrated solutions of these Pt(II/IV) complexes (≥50 mM) served to validate the chromatographic peak assignments, particularly in the case of the possible stereoisomers of Pt(II/IV) complex anions. By means of IP-RP-HPLC coupled to ICP-MS or ICP-OES it is possible to accurately determine the relative concentrations of all possible Pt(II/IV) species in these solutions, which allows for the accurate determination of the photometric characteristics (λ(max) and ?) of all the species in this series, by recording of the UV/Vis absorption spectra of all eluted species, using photo-diode array, and quantification with ICP-MS or ICP-OES. With this method it is readily possible to separate and estimate the concentrations of the various stereoisomers which are present in these solutions at sub-millimolar concentrations, such as cis- and trans-[PtCl(4)Br(2)](2-), fac- and mer-[PtCl(3)Br(3)](2-) and cis- and trans-[PtCl(2)Br(4)](2-) for Pt(IV), and cis- and trans-[PtCl(2)Br(2)](2-) in the case of Pt(II). All mixed halide Pt(II) and Pt(IV) species can be separated and quantified in a single IP-RP-HPLC experiment, using the newly obtained photometric molar absorptivities, ?, determined herein at given wavelengths.  相似文献   

9.
The Hg2+aq- and HgCl+aq-assisted aquations of [PtCl4]2- (1), [PtCl3(H2O)]- (2), cis-[PtCl2(H2O)2] (3), trans-[PtCl2(H2O)2] (4), [PtCl(H2O)3]+ (5), [PtCl3Me2SO]- (6), trans-[PtCl2(H2O)Me2SO] (7), cis-[PtCl(H2O)2Me2SO]+ (8), trans-[PtCl(H2O)2M32SO]+ (9), trans-[PtCl2(NH3)2] (10), and cis-[PtCl2(NH3)2] (11) have been studied at 25.0 degrees C in a 1.00 M HClO4 medium buffered with chloride, using stopped-flow and conventional spectrophotometry. Saturation kinetics and instantaneous, large UV/vis spectral changes on mixing solutions of platinum complex and mercury are ascribed to formation of transient adducts between Hg2+ and several of the platinum complexes. Depending on the limiting rate constants, these adducts are observed for a few milliseconds to a few minutes. Thermodynamic and kinetics data together with the UV/vis spectral changes and DFT calculations indicate that their structures are characterized by axial coordination of Hg to Pt with remarkably short metal-metal bonds. Stability constants for the Hg2+ adducts with complexes 1-6, 10, and 11 are (2.1 +/- 0.4) x 10(4), (8 +/- 1) x 10(2), 94 +/- 6, 13 +/- 2, 5 +/- 2, 60 +/- 6, 387 +/- 2, and 190 +/- 3 M-1, respectively, whereas adduct formation with the sulfoxide complexes 7-9 is too weak to be observed. For analogous platinum(II) complexes, the stabilities of the Pt-Hg adducts increase in the order sulfoxide < aqua < ammine complex, reflecting a sensitivity to the pi-acid strength of the Pt ligands. Rate constants for chloride transfer from HgCl+ and HgCl2 to complexes 1-11 have been determined. Second-order rate constants for activation by Hg2+ are practically the same as those for activation by HgCl+ for each of the platinum complexes studied, yet resolved contributions for Hg2+ and HgCl+ reveal that the latter does not form dinuclear adducts of any significant stability. The overall experimental evidence is consistent with a mechanism in which the accumulated Pt(II)-Hg2+ adducts are not reactive intermediates along the reaction coordinate. The aquation process occurs via weaker Pt-Cl-Hg or Pt-Cl-HgCl bridged complexes.  相似文献   

10.
The regioselectivity of photoinduced electron-transfer (PET) reactions of unsymmetrical phthalimides is controlled by the spin density distribution of the intermediate radical anions. ROHF ab initio calculations were found to be most suitable for atomic spin density analysis. Intramolecular PET reactions of quinolinic acid imides were studied with the potassium butyrate and hexanoate 1a,b and a cysteine derivative 3. The photocyclizations products 2a,b and 4 were formed with moderate regioselectivities (68:32, 57:43, and 81:19) showing preferential ortho cyclization. The intermolecular reaction of potassium propionate and potassium isobutyrate with N-methylquinolinic acid imide (5) yielded as addition products the dihydropyrrolo[3,4-b]pyridines 6a,b with slight ortho regioselectivity (55:45). In contrast to these low regioselectivities, the PET reaction of potassium propionate with the methyl ester of N-methyltrimellitic acid imide (9) yielded solely the para addition product 10. Likewise, the intramolecular photoreaction of the cysteine derivative 7 gave a 75:25 (para/meta) mixture of regioisomeric cyclization products 8. The regioselectivity originates from donor-acceptor interactions prior to electron transfer and differences in spin densities in the corresponding imide radical anions. The results of DFT and ab initio calculations for the radical anions of the quinolinic acid imide (11(*)(-)) and the methyl ester of trimellitic acid imide (12(*)(-))( )()were in agreement with the latter assumption: spin densities in 11(*)(-) were higher for the imido ortho carbon atoms (indicating preferential ortho coupling); for 12(*)(-) the spin densities were higher for the imido para carbon atoms (indicating preferential para coupling). These correlations became more significant when the additional spin densities at the carbonyl oxygen and the adjacent carbon atoms were taken into account. The cyclization selectivities for 2, 4, and 8 deviate from the intermolecular examples probably because of ground-state and solvent effects.  相似文献   

11.
The hydrothermal reaction of K(3)[Fe(CN)(6)], CuCl(2), and 2,2'-bipyridine (bipy) resulted in the formation of a 2D cyanide-bridged heterobimetallic Fe(II)-Cu(I) complex, [Fe(bipy)(2)(CN)(4)Cu(2)], 1. Working in the same conditions, but using 2,2'-bipyrimidine (bpym) instead of bipy and methanol as solvent, we obtained the homometallic Cu(I) complex [Cu(2)(CN)(2)(bpym)](2), 2. The structure of 1 consists of cyanide-bridged Fe(II)-Cu(I) layers, constructed from alternately fused 6 (Fe(2)Cu(4)) and 10 (Fe(2)Cu(8)) metal-membered centrosymmetric rings, in which copper(I) and iron(II) ions exhibit distorted trigonal planar and octahedral cooordination environments, respectively. The formation of 1 can be explained by assuming that, under high pressure and temperature, iron(III) and copper(II) ions are reduced with the simultaneous and/or subsequent substitution of four cyanide ligands by two bipy molecules in the ferricyanide anions. It is interesting to note that 1 is the first cyanide-bridged heterobimetallic complex prepared by solvothermal methods. The structure of 2 consists of neutral 2D honeycomb layers constructed from fused Cu(6)(CN)(4)(bpym)(2) rings, in which copper(I) atoms exhibit distorted tetrahedral geometry. The isolation of 1 and 2, by using K(3)[Fe(CN)(6)] as starting material, demonstrates that hydrothermal chemistry can be used not only to prepare homometallic materials but also to prepare cyanide-bridged bimetallic materials. The temperature dependence of chi(M)T and M?ssbauer measurements for 1 reveal the existence of a high spin <--> low spin equilibrium involving the Fe(II) ions.  相似文献   

12.
Reported are the preparations of cis-[PtCl(2)(quinoline)(2)] and cis-[PtCl(2)(3-bromoquinoline)(quinoline)] and an investigation of the stabilities and interconversion of the rotamer forms of these complexes. Both head-to-head (HTH) and head-to-tail (HTT) rotamer forms are found in the crystal structure of cis-[PtCl(2)(quinoline)(2)]. The NOESY NMR spectrum of cis-[PtCl(2)(quinoline)(2)] in dmf-d(7) at 300 K is consistent with conformational exchange brought about by rotation about the Pt-N(quinoline) bonds. H.H nonbonded distances between H atoms of the two different quinoline ligands were determined from NOESY data, and these distances are in accord with those observed in the crystal structure and derived from molecular mechanics models. cis-[PtCl(2)(3-bromoquinoline)(quinoline)] was prepared to alleviate the symmetry-imposed absence of inter-ring H2/H2 and H8/H8 NOESY cross-peaks for cis-[PtCl(2)(quinoline)(2)]. Molecular mechanics calculations on the complexes show the HTT rotamers to be 1-2 kJ mol(-)(1) more stable than the HTH forms, consistent with the (1)H spectra where the intensities of resonances for the two forms are approximately equal. Variable-temperature (1)H NMR spectra of cis-[PtCl(2)(quinoline)(2)] in dmf-d(7) indicate a rotational energy barrier of 82 +/- 4 kJ mol(-)(1). Variable-temperature (1)H NMR spectra indicate that the Br substituent on the quinoline ring does not affect the energy barrier to interconversion between the HTT and HTH forms (79 +/- 5 kJ mol(-)(1)). The steric contribution to the rotation barrier was calculated using molecular mechanics calculations and was found to be approximately 40 kJ mol(-)(1), pointing to a possible need for an electronic component to be included in future models.  相似文献   

13.
Experimental evidence including infrared spectra for the formation of the dinitrosyl metalloporphyrin complexes M(P)(NO)(2) (M = Ru or Fe, P = tetraphenylporphyrin (TPP), octaethylporphyrin (OEP), or tetra-m-tolylporphryin (TmTP)) is described. Although observation of a single NO stretching band in the IR spectrum of each M(P)(NO)(2) complex first suggested a centrosymmetric (D(4)(h)() or C(2)(h)()) structure, DFT geometry optimizations and frequency calculations of model complexes indicate that the trans-syn (C(2)(v)()) conformation should be more stable. The frequency calculations resolve the apparent ambiguity in the IR spectra in terms of the relative oscillator strengths of the predicted IR bands.  相似文献   

14.
The compound [Ru(NO)(bpym)(terpy)](PF6)3, bpym = 2,2'-bipyrimidine and terpy = 2,2':6',2"-terpyridine, with a {RuNO}6 configuration (angle Ru-N-O 175.2(4) degrees ) was obtained from the structurally characterized precursor [Ru(NO2)(bpym)(terpy)](PF6), which shows bpym-centered reduction and metal-centered oxidation, as evident from EPR spectroscopy. The relatively labile [Ru(NO)(bpym)(terpy)](3+), which forms a structurally characterized acetonitrile substitution product [Ru(CH3CN)(bpym)(terpy)](PF6)2 upon treatment with CH3OH/CH3CN, is electrochemically reduced in three one-electron steps of which the third, leading to neutral [Ru(NO)(bpym)(terpy)], involves electrode adsorption. The first-two reduction processes cause shifts of nu(NO) from 1957 via 1665 to 1388 cm(-1), implying a predominantly NO-centered electron addition. UV-vis-NIR Spectroscopy shows long-wavelength ligand-to-ligand charge transfer absorptions for [Ru(II)(NO(-I))(bpym)(terpy)]+ in the visible region, whereas the paramagnetic intermediate [Ru(NO)(bpym)(terpy)](2+) exhibits no distinct absorption maximum above 309 nm. EPR spectroscopy of the latter at 9.5, 95, and 190 GHz shows the typical invariant pattern of the {RuNO}7 configuration; however, the high-frequency measurements at 4 and 10 K reveal a splitting of the g1 and g2 components, which is tentatively attributed to conformers resulting from the bending of RuNO. DFT calculations support the assignments of oxidation states and the general interpretation of the electronic structure.  相似文献   

15.
Computations on all the possible positional isomers of the closo-azaboranes NB(n)()(-)(1)H(n)() (n = 5-12) reveal substantial differences in the relative energies. Data at the B3LYP/6-311+G level of density functional theory (DFT) agree well with expectations based on the topological charge stabilization, with the qualitative connectivity preferences of Williams, and with the Jemmis-Schleyer six interstitial electron rules. The energetic relationship involving each of the most stable positional isomers, 1-NB(4)H(5), NB(5)H(6), 2-NB(6)H(7), 1-NB(7)H(8), 4-NB(8)H(9), 1-NB(9)H(10), 2-NB(10)H(11), NB(11)H(12), was based on the energies (DeltaH) of the model reaction: NBH(2) + (n-1)BH(increment) --> NB(n)()H(n)()(+1) (n = 4-11). This evaluation shows that the stabilities of closo-azaboranes NB(n)()(-)(1)H(n)() (n = 5-12) increase with increasing cluster size from 5 to 12 vertexes. The "three-dimensional aromaticity" of these closo-azaboranes NB(n)()(-)(1)H(n)() (n = 5-12) is demonstrated by their the nucleus-independent chemical shifts (NICS) and their magnetic susceptibilities (chi), which match one another well. However, there is no direct relationship between these magnetic properties and the relative stabilities of the positional isomers of each cluster. As expected, other energy contributions such as topological charge stabilization and connectivity can be equally important.  相似文献   

16.
The symmetrically dinuclear title compounds were isolated as diamagnetic [(bpy)2Ru(mu-H2L)Ru(bpy)2](ClO4)2 (1-(ClO4)2) and as paramagnetic [(acac)2Ru(mu-H2L)Ru(acac)2] (2) complexes (bpy=2,2'-bipyridine; acac- = acetylacetonate = 2,4-pentanedionato; H2L = 2,5-dioxido-1,4-benzoquinonediimine). The crystal structure of 22 H2O reveals an intricate hydrogen-bonding network: Two symmetry-related molecules 2 are closely connected through two NH(H2L2-)O(acac-) interactions, while the oxygen atoms of H2L2- of two such pairs are bridged by an (H2O)8 cluster at half-occupancy. The cluster consists of cyclic (H2O)6 arrangements with the remaining two exo-H2O molecules connecting two opposite sides of the cyclo-(H2O)6 cluster, and oxido oxygen atoms forming hydrogen bonds with the molecules of 2. Weak antiferromagnetic coupling of the two ruthenium(III) centers in 2 was established by using SQUID magnetometry and EPR spectroscopy. Geometry optimization by means of DFT calculations was carried out for 1(2+) and 2 in their singlet and triplet ground states, respectively. The nature of low-energy electronic transitions was explored by using time-dependent DFT methods. Five redox states were reversibly accessible for each of the complexes; all odd-electron intermediates exhibit comproportionation constants K(c)>10(8). UV-visible-NIR spectroelectrochemistry and EPR spectroscopy of the electrogenerated paramagnetic intermediates were used to ascertain the oxidation-state distribution. In general, the complexes 1n+ prefer the ruthenium(II) configuration with electron transfer occurring largely at the bridging ligand (mu-H2Ln-), as evident from radical-type EPR spectra for 13+ and (+. Higher metal oxidation states (iii, iv) appear to be favored by the complexes 2m; intense long-wavelength absorption bands and RuIII-type EPR signals suggest mixed-valent dimetal configurations of the paramagnetic intermediates 2+ and 2-.  相似文献   

17.
The dicyanamidobenzene-bridge diruthenium complex [{Ru(tpy)(thd)}(2)(mu-dicyd)][PF(6)] ([3][PF(6)]) (dicyd = 1,4-dicyanamidobenzene, tpy = 2,2':6',2' '-terpyridine, thd = 2,2,6,6-tetramethyl-3,5-heptanedione) and its mononuclear counterpart [Ru(tpy)(thd)(Ipcyd)] (2) [Ipcyd = 4-iodophenylcyanamide anion (Ipcyd(-))] were synthesized and fully characterized. Cyclic voltammetry of 3 showed the presence of four reversible one-electron redox couples. UV-vis-NIR spectroelectrochemistry and EPR spectroscopy of the electrogenerated paramagnetic intermediates were used to ascertain the oxidation-state distribution. The stable starting dinuclear complex 3(+) is found to be a ligand-centered anion radical as shown by EPR spectroscopy, magnetic susceptibility measurements, and DFT calculations. Oxidation of 3(+) to 3(2+) led to an EPR silent system due to substantial intramolecular antiferromagnetic interaction of the electron spins carried by the low spin ruthenium(III) atom and the bridging anion radical dicyanamido (dicyd(*)(-)), an observation which was supported by UV-vis-NIR, X-ray structure, and DFT calculations. Complex 3(3+) presented an EPR spectra consistent with a total effective spin S = (1)/(2) issued from an antiferromagnetic interaction of electron spins carried by two low spin ruthenium(III) atoms and the bridging anion radical dicyd(*)(-) in accordance with UV-vis-NIR. This study shows that the dicyanamidobenzene bridging ligand has indubitably a noninnocent behavior.  相似文献   

18.
Electronic structures and spectroscopic properties of a series of nitrido-osmium (VI) complex ions with acetylide ligands, [OsN(C[Triple Bond]CR)(4)](-) (R[Double Bond]H, (1), CH(3) (2), and Ph (3)) were investigated theoretically. The structures of the complexes were fully optimized at the B3LYP and CIS level for the ground states and excited states, respectively. The calculated bond lengths of Os[Triple Bond]N (1.639 A in 1, 1.642 A in 2, and 1.643 A in 3) and Os-C (2.040 A in 1, 2.043 A in 2, and 2.042 A in 3) in ground state agree well with the experimental results. The bond length of Os[Triple Bond]N bond is lengthened by ca. 0.13 A in the A (3)B(2) excited state compared to the (1)A(1) ground state, which is consistent with the lower vibration frequency of nu(Os-N) ( approximately 780 cm(-1)) in the excited state than that ( approximately 1175 cm(-1)) in the ground state. Among the calculated dipole-allowed absorptions at lambda>250 nm, the intense absorption at 261 nm for 1, 266 nm for 2, and 300 nm for 3 were attributed to the (1)[pi(C[Triple Bond]C)]-->(1)[pi(*)(N[Triple Bond]Os)+pi(*)(C[Triple Bond]C)], (1)[pi(C[Triple Bond]C)]-->(1)[pi(*)(N[Triple Bond]Os)+pi(*)(C[Triple Bond]C)], and (1)[pi(C[Triple Bond]CPh)]-->(1)[pi(*)(N[Triple Bond]Os)+pi(*)(C[Triple Bond]CPh)], respectively. The lowest energy absorption at lambda(max)=393 nm for 1, 400 nm for 2, and 400 nm for 3 were assigned as (1)[d(xy)(Os)+pi(C[Triple Bond]C)]-->(1)[pi(*)(N[Triple Bond]Os)+pi(*)(C[Triple Bond]C)], (1)[d(xy)(Os)+pi(C[Triple Bond]C)]-->(1)[pi(*)(N[Triple Bond]Os)+pi(*)(C[Triple Bond]C)], and (1)[d(xy)(Os)+pi(C[Triple Bond]CPh)]-->(1)[pi(*)(N[Triple Bond]Os)+pi(*)(C[Triple Bond]CPh)], respectively. The calculated phosphorescence emission at lambda(max)=581 nm for 1, 588 nm for 2, and 609 nm for 3 were originated from (3)[(pi(*)(N[Triple Bond]Os)+pi(*)(C[Triple Bond]C))(1)(d(xy)(Os)+pi(C[Triple Bond]C))(1)], (3)[(pi(*)(N[Triple Bond]Os)+pi(*)(C[Triple Bond]C))(1)(d(xy)(Os)+pi(C[Triple Bond]C))(1)], and (3)[(pi(*)(N[Triple Bond]Os)+pi(*)(C[Triple Bond]CPh))(1)(d(xy)(Os)+pi(C[Triple Bond]CPh))(1)] excited state, respectively.  相似文献   

19.
195Pt NMR together with DFT calculations and MD simulations, offer a powerful toolkit with which to probe the hydration shells of the [PtCl6]2- anions, which may lead to a more profound understanding of the solute-solvent interactions of such complexes.  相似文献   

20.
The mixed-metal supramolecular complexes [(tpy)Ru(tppz)PtCl](PF6)3 and [ClPt(tppz)Ru(tppz)PtCl](PF6)4 (tpy = 2,2':6',2'-terpyridine and tppz = 2,3,5,6-tetrakis(2-pyridyl)pyrazine) were synthesized and characterized. These complexes contain ruthenium bridged by tppz to platinum centers to form stereochemically defined linear assemblies. X-ray crystallographic determinations of the two complexes confirm the identity of the metal complexes and reveal intermolecular interactions of the Pt sites in the solid state for [(tpy)Ru(tppz)PtCl](PF6)3 with a Pt...Pt distance of 3.3218(5) A. The (1)H NMR spectra show the expected splitting patterns characteristic of stereochemically defined mixed-metal systems and are assigned with the use of (1)H-(1)H COSY and NOESY. Electronic absorption spectroscopy displays intense ligand-based pi --> pi* transitions in the UV and MLCT transitions in the visible. Electrochemically [(tpy)Ru(tppz)PtCl](PF6)3 and [ClPt(tppz)Ru(tppz)PtCl](PF6)4 display reversible Ru (II/III) couples at 1.63 and 1.83 V versus Ag/AgCl, respectively. The complexes display very low potential tppz (0/-) and tppz(-/2-) couples, relative to their monometallic synthons, [(tpy)Ru(tppz)](PF6)2 and [Ru(tppz)2](PF6)2, consistent with the bridging coordination of the tppz ligand. The Ru(dpi) --> tppz(pi*) MLCT transitions are also red-shifted relative to the monometallic synthons occurring in the visible centered at 530 and 538 nm in CH3CN for [(tpy)Ru(tppz)PtCl](PF6)3 and [ClPt(tppz)Ru(tppz)PtCl](PF6)4, respectively. The complex [(tpy)Ru(tppz)PtCl](PF6)3 displays a barely detectable emission from the Ru(dpi) --> tppz(pi*) (3)MLCT in CH 3CN solution at RT. In contrast, [ClPt(tppz)Ru(tppz)PtCl](PF6)4 displays an intense emission from the Ru(dpi) --> tppz(pi*) (3)MLCT state at RT with lambda max(em) = 754 nm and tau = 80 ns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号