首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 192 毫秒
1.
Ar-B(OH)2 (1a: Ar = C6H4OMe-4, 1b: Ar = C6H3Me2-2,6) react immediately with Rh(OC6H4Me-4)(PMe3)3 (2) in 5 : 1 molar ratio at room temperature to generate [Rh(PMe3)4]+[B5O6Ar4]- (3a: Ar = C6H4OMe-4, 3b: Ar = C6H3Me2-2,6). p-Cresol (92%/Rh), anisole (80%/Rh) and H2O (364%/Rh) are formed from 1a and 2. The reaction of 1a with 2 for 24 h produces [Rh(PMe3)4]+[B5O6(OH)4]- (4) as a yellow solid. This is attributed to hydrolytic dearylation of once formed 3a because the direct reaction of 3a with excess H2O forms 4. An equimolar reaction of 2 with phenylboroxine (PhBO)3 causes transfer of the 4-methylphenoxo ligand from rhodium to boron to produce [Rh(PMe3)4]+[B3O3Ph3(OC6H4Me-4)]- (5). Arylboronic acids 1a and 1b react with Rh(OC6H4Me-4)(PR3)3 (6: R = Et, 8: R = Ph) and with Rh(OC6H4Me-4)(cod)(PR3) (11: R = iPr, 12: R = Ph) to form [Rh(PR3)4]+[B5O6Ar4]- (7a: R = Et, Ar = C6H4OMe-4, 7b: R = Et, Ar = C6H3Me2-2,6, 9a: R = Ph, Ar = C6H3Me2-2,6) and [Rh(cod)(PR3)(L)]+[B5O6Ar4]- (13b: R = iPr, L = acetone, Ar = C6H3Me2-2,6, 14a: R = Ph, L = PPh3, Ar = C6H4OMe-4, 14b: R = Ph, L = PPh3, Ar = C6H3Me2-2,6), respectively. Hydrolysis of 14a yields [Rh(cod)(PPh3)2]+[B5O6(OH)4]- (15) quantitatively.  相似文献   

2.
Two new dirhodium(II) catalysts of general formula Rh(2)(N-O)(2)[(C(6)H(4))P(C(6)H(5))(2)](2) (N-O = C(4)H(4)NO(2)) are prepared, starting from Rh(2)(O(2)CCH(3))(2)(PC)(2)L(2) [PC = (C(6)H(4))P(C(6)H(5))(2) (head-to-tail arrangement); L = HO(2)CCH(3)]. The thermal reaction of Rh(2)(O(2)CCH(3))(2)(PC)(2).L(2) with the neutral succinimide stereoselectively gives one compound that according to the X-ray structure determination has the formula Rh(2)(C(4)H(4)NO(2))(2)[(C(6)H(4))P(C(6)H(5))(2)](2) (1). It corresponds to the polar isomer with two bridging imidate ligands in a head-to-head configuration. However, stepwise reaction of Rh(2)(O(2)CCH(3))(2)(PC)(2).L(2) with (CH(3))(3)SiCl and potassium succinimidate yields a mixture of 1 and one of the two possible isomers (structure B) with a head-to-tail configuration of the imidate ligands, Rh(2)(C(4)H(4)NO(2))(2)[(C(6)H(4))P(C(6)H(5))(2)](2) (2), also characterized by X-ray methods. In solution, compound 2 undergoes slow isomerization to 1; the rate of this process is enhanced by the presence of acetonitrile. Compounds 1 and 2 are obtained as pure enantiomers starting from (M)- and (P)-Rh(2)(O(2)CCH(3))(2)(PC)(2).L(2) rather than from the racemic mixture. Their enantioselectivities in cyclopropanation of 1-diazo-5-penten-2-one are similar to those reported for the dirhodium amidate catalysts.  相似文献   

3.
The reaction of the potassium beta-diiminate KL (L = [{N(Ar)C(H)}(2)CPh](-); Ar = C(6)H(3)Pr(i)(2)-2,6) with PI(3) unexpectedly produced a phosphenium salt of the intermolecularly C,C-coupled ligand [P(I){N(Ar)CH}(2)C(C(6)H(4)-4)C(Ph)(CH[double bond, length as m-dash]NAr)(2)](+)[I(3)](-), while an intramolecularly N,N-coupled salt [N[upper bond 1 start](Ar)C(H)C(Ph)C(H)N[upper bond 1 end](Ar)](+)[I(5)](-) was isolated from KL + I(2).  相似文献   

4.
Reaction of 3,5-(CF(3))(2)PzLi with [Rh(μ-Cl)(η(2)-C(2)H(4))(2)](2) or [Rh(μ-Cl)(PMe(3))(2)](2) in Et(2)O gave the dinuclear complexes [Rh(η(2)-C(2)H(4))(2)(μ-3,5-(CF(3))(2)-Pz)](2) (1) and [Rh(2)(μ-Cl)(μ-3,5-(CF(3))(2)-Pz) (PMe(3))(4)] (2) respectively (3,5-(CF(3))(2)Pz = bis-trifluoromethyl pyrazolate). Reaction of PMe(3) with [Rh(COD)(μ-3,5-(CF(3))(2)-Pz)](2) in toluene gave [Rh(3,5-(CF(3))(2)-Pz)(PMe(3))(3)] (3). Reaction of 1 and 3 in toluene (1?:?4) gave moderate yields of the dinuclear complex [Rh(PMe(3))(2)(μ-3,5-(CF(3))(2)-Pz)](2) (4). Reaction of 3,5-(CF(3))(2)PzLi with [Rh(PMe(3))(4)]Cl in Et(2)O gave the ionic complex [Rh(PMe(3))(4)][3,5-(CF(3))(2)-Pz] (5). Two of the complexes, 1 and 3, were studied for use as CVD precursors. Polycrystalline thin films of rhodium (fcc-Rh) and metastable-amorphous films of rhodium phosphide (Rh(2)P) were grown from 1 and 3 respectively at 170 and 130 °C, 0.3 mmHg in a hot wall reactor using Ar as the carrier gas (5 cc min(-1)). Thin films of amorphous rhodium and rhodium phosphide (Rh(2)P) were grown from 1 and 3 at 170 and 130 °C respectively at 0.3 mmHg in a hot wall reactor using H(2) as the carrier gas (7 cc min(-1)).  相似文献   

5.
Two new vanadoselenites, [SeV(3)O(11)](3)(-) and [Se(2)V(2)O(10)](2)(-), were synthesized by reacting SeO(2) with VO(3)(-). Single-crystal X-ray structural analyses of [(n-C(4)H(9))(4)N](3)[SeV(3)O(11)].0.5H(2)O [orthorhombic, space group P2(1)2(1)2, a = 22.328(5) A, b = 44.099(9) A, c = 12.287(3) A, Z = 8] and [[(C(6)H(5))(3)P](2)N](2)[Se(2)V(2)O(10)] [monoclinic, space group P2(1)/n, a = 12.2931(3) A, b = 13.5101(3) A, c = 20.9793(5) A, beta = 106.307(1) degrees, Z = 2] revealed that both anions are composed of Se(x)()V(4)(-)(x)()O(4) rings. The (51)V, (77)Se, and (17)O NMR spectra established that both [SeV(3)O(11)](3)(-) and [Se(2)V(2)O(10)](2)(-) anions maintain this ring structure in solution.  相似文献   

6.
Cotton FA  Murillo CA  Wang X  Yu R 《Inorganic chemistry》2004,43(26):8394-8403
Reaction of racemic cis-Rh(2)(C(6)H(4)PPh(2))(2)(OAc)(2)(HOAc)(2) with excess Me(3)OBF(4) in CH(3)CN results in the formation of racemic cis-[Rh(2)(C(6)H(4)PPh(2))(2)(CH(3)CN)(6)](BF(4))(2).0.5H(2)O (1.0.5H(2)O), an ionic dirhodium complex which has two cisoid nonlabile orthometalated phosphine bridging anions and six labile CH(3)CN ligands in equatorial and axial positions. Reactions of 1 with tetraethylammonium salts of the linear dicarboxylates, oxalate, terephthalate, and 4,4'-biphenyl-dicarboxylate, in organic solvents, produced racemic crystals of the triangular compounds [Rh(2)(C(6)H(4)PPh(2))(2)](3)(C(2)O(4))(3)(py)(6).6MeOH.H(2)O (2.6MeOH.H(2)O), [Rh(2)(C(6)H(4)PPh(2))(2)](3)(O(2)CC(6)H(4)CO(2))(3)(DMF)(6).6.5DMF.0.5H(2)O (3.6.5DMF.0.5H(2)O), and [Rh(2)(C(6)H(4)PPh(2))(2)](3)(O(2)CC(6)H(4)C(6)H(4)CO(2))(3)(py)(6).4.5CH(3)OH.0.75H(2)O (4.4.5CH(3)OH.0.75H(2)O), respectively. All compounds are electrochemically active. The relative chiralities of the dirhodium units in each triangle have been established using a combination of data from X-ray crystallography and (31)P NMR spectroscopy.  相似文献   

7.
Infrared predissociation (IRPD) spectra of Li(+)(C(6)H(6))(1-4)(H(2)O)(1-2)Ar(0-1) and Na(+)(C(6)H(6))(2-4)(H(2)O)(1-2)Ar(1) are presented along with ab initio calculations. The results indicate that the global minimum energy structure for Li(+)(C(6)H(6))(2)(H(2)O)(2) has each water forming a π-hydrogen bond with the same benzene molecule. This bonding motif is preserved in Li(+)(C(6)H(6))(3-4)(H(2)O)(2)Ar(0-1) with the additional benzene ligands binding to the available free OH groups. Argon tagging allows high-energy Li(+)(C(6)H(6))(2-4)(H(2)O)(2)Ar isomers containing water-water hydrogen bonds to be trapped and detected. The monohydrated, Li(+) containing clusters contain benzene-water interactions with varying strength as indicated by shifts in OH stretching frequencies. The IRPD spectra of M(+)(C(6)H(6))(1-4)(H(2)O)(1-2)Ar are very different for lithium-bearing versus sodium-bearing cluster ions emphasizing the important role of ion size in determining the most favorable balance of competing noncovalent interactions.  相似文献   

8.
Reactions of the bis(hydrosulfido) complexes [Cp*Rh(SH)(2)(PMe(3))] (1a; Cp* = eta(5)-C(5)Me(5)) with [CpTiCl(3)] (Cp = eta(5)-C(5)H(5)) and [TiCl(4)(thf)(2)] in the presence of triethylamine led to the formation of the sulfido-bridged titanium-rhodium complexes [Cp*Rh(PMe(3))(micro(2)-S)(2)TiClCp] (2a) and [Cp*Rh(PMe(3))(micro2-S)(2)TiCl(2)] (3a), respectively. Complex 3a and its iridium analogue 3b were further converted into the bis(acetylacetonato) complexes [Cp*M(PMe(3))(micro(2)-S)(2)Ti(acac)(2)] (4a, M = Rh; 4b, M = Ir) upon treatment with acetylacetone. The hydrosulfido complexes 1a and [Cp*Ir(SH)(2)(PMe(3))] (1b) also reacted with [VCl(3)(thf)(3)] and [Mo(CO)(4)(nbd)] (nbd = 2,5-norbornadiene) to afford the cationic sulfido-bridged VM2 complexes [(Cp*M(PMe(3))(micro2-S)(2))2V](+) (5a(+), M = Rh; 5b(+), M = Ir) and the hydrosulfido-bridged MoM complexes [Cp*M(PMe(3))(micro2-SH)(2)Mo(CO)(4)] (6a, M = Rh; 6b, M = Ir), respectively.  相似文献   

9.
A new class of transition metal cluster is described, [Rh(6)(PR(3))(6)H(12)][BAr(F)(4)](2) (R = (i)Pr (1a), Cy (2a); BAr(F)(4) = [B{C(6)H(3)(CF(3))(2)}(4)](-)). These clusters are unique in that they have structures exactly like those of early transition metal clusters with edge-bridging pi-donor ligands rather than the structures expected for late transition metal clusters with pi-acceptor ligands. The solid-state structures of 1a and 2a have been determined, and the 12 hydride ligands bridge each Rh-Rh edge of a regular octahedron. Pulsed gradient spin-echo NMR experiments show that the clusters remain intact in solution, having calculated hydrodynamic radii of 9.5(3) A for 1a and 10.7(2) A for 2a, and the formulation of 1a and 2a was unambiguously confirmed by ESI mass spectrometry. Both 1a and 2a take up two molecules of H(2) to afford the cluster species [Rh(6)(P(i)Pr(3))(6)H(16)][BAr(F)(4)](2) (1b) and [Rh(6)(PCy(3))(6)H(16)][BAr(F)(4)](2) (2b), respectively, as characterized by NMR spectroscopy, ESI-MS, and, for 2b, X-ray crystallography using the [1-H-CB(11)Me(11)](-) salt. The hydride ligands were not located by X-ray crystallography, but (1)H NMR spectroscopy showed a 15:1 ratio of hydride ligands, suggesting an interstitial hydride ligand. Addition of H(2) is reversible: placing 1b and 2b under vacuum regenerates 1a and 2a. DFT calculations on [Rh(6)(PH(3))(6)H(x)()](2+) (x = 12, 16) support the structural assignments and also show a molecular orbital structure that has 20 orbitals involved with cluster bonding. Cluster formation has been monitored by (31)P{(1)H} and (1)H NMR spectroscopy, and mechanisms involving heterolytic H(2) cleavage and elimination of [HP(i)Pr(3)](+) or the formation of trimetallic intermediates are discussed.  相似文献   

10.
The complexes [Rh(Tp)(PPh(3))(2)] (1a) and [Rh(Tp)(P(4-C(6)H(4)F)(3))(2)] (1b) combine with PhC(2)H, 4-NO(2)-C(6)H(4)CHO and Ph(3)SnH to give [Rh(Tp)(H)(C(2)Ph)(PR(3))] (R = Ph, 2a; R = 4-C(6)H(4)F, 2b), [Rh(Tp)(H)(COC(6)H(4)-4-NO(2))(PR(3))] (R = Ph, 3a), and [Rh(Tp)(H)(SnPh(3))(PR(3))] (R = Ph, 4a; R = 4-C(6)H(4)F, 4b) in moderate to good yield. Complexes 1a, 2b, 3a, and 4a have been structurally characterized. In 1a the Tp ligand is bidentate, in 2b, 3a, and 4a it is tridentate. Crystal data for 1a: space group P2(1)/c; a = 11.9664(19), b = 21.355(3), c = 20.685(3) A; beta = 112.576(7) degrees; V = 4880.8(12) A(3); Z = 4; R = 0.0441. Data for 2b: space group P(-)1; a = 10.130(3), b = 12.869(4), c = 17.038(5) A; alpha = 78.641(6), beta = 76.040(5), gamma = 81.210(6) degrees; V = 2100.3(11) A(3); Z = 2; R = 0.0493. Data for 3a: space group P(-)1; a = 10.0073(11), b = 10.5116(12), c = 19.874(2) A; alpha = 83.728(2), beta = 88.759(2), gamma = 65.756(2) degrees; V =1894.2(4) A(3); Z = 2; R = 0.0253. Data for 4a: space group P2(1)/c; a = 15.545(2), b = 18.110(2), c = 17.810(2) A; beta = 95.094(3) degrees; V = 4994.1(10) A(3); Z = 4; R = 0.0256. NMR data ((1)H, (31)P, (103)Rh, (119)Sn) are also reported.  相似文献   

11.
The reaction of the anticancer active compound [Rh(2)(mu-O(2)CCH(3))(2)(bpy)(2)(CH(3)CN)(2)][BF(4)](2) (1) (bpy = 2,2'-bipyridine) with NaC(6)H(5)S under anaerobic conditions yields Rh(2)(eta(1)-C(6)H(5)S)(2)(mu-C(6)H(5)S)(2)(bpy)(2).CH(3)OH (2), which was characterized by UV-visible, IR, and (1)H NMR spectroscopies as well as single-crystal X-ray crystallography. Compound 2 crystallizes as dark red platelets in the monoclinic space group C2/c with cell parameters a = 20.398(4) A, b = 11.861(2) A, c = 17.417(4) A, beta = 108.98 degrees, V = 3984.9(14) A(3), Z = 4. The main structural features are the presence of a [Rh(2)](4+) core with a Rh-Rh distance of 2.549(2) A bridged by two benzene thiolate ligands in a butterfly-type arrangement. The axial positions of the [Rh(2)](4+) core are occupied by two terminal benzene thiolates. Cyclic voltammetric studies of 2 reveal that the compound exhibits an irreversible oxidation at +0.046 V in CH(3)CN, which is in accord with the fact that the compound readily oxidizes in the presence of O(2). The fact that this unusual dirhodium(II/II) thiolate compound is formed under these conditions is an important first step in understanding the metabolism of dirhodium anticancer active compounds with thiol-containing peptides and proteins.  相似文献   

12.
The syntheses, crystal structures determined by single-crystal X-ray diffraction, and characterizations of new Mo(6) cluster chalcobromides and cyano-substituted compounds with 24 valence electrons per Mo(6) cluster (VEC = 24), are presented in this work. The structures of Cs(4)Mo(6)Br(12)S(2) and Cs(4)Mo(6)Br(12)Se(2) prepared by solid state routes are based on the novel [(Mo(6)Br(i)(6)Y(i)(2))Br(a)(6)](4)(-) (Y = S, Se) discrete units in which two chalcogen and six bromine ligands randomly occupy the inner positions, while the six apical ones are fully occupied by bromine atoms. The interaction of these two compounds with aqueous KCN solution results in apical ligand exchange giving the two first Mo(6) cyano-chalcohalides: Cs(0.4)K(0.6)(Et(4)N)(11)[(Mo(6)Br(6)S(2))(CN)(6)](3).16H(2)O and Cs(0.4)K(0.6)(Et(4)N)(11)[(Mo(6)Br(6)Se(2))(CN)(6)](3).16H(2)O. Their crystal structures, built from the original [(Mo(6)Br(i)(6)Y(i)(2))(CN)(a)(6)](4)(-) discrete units, will be compared to those of the two solid state precursors and other previously reported Mo(6) cluster compounds. Their redox properties and (77)Se NMR characterizations will be presented. Crystal data: Cs(4)Mo(6)Br(12)S(2), orthorhombic, Pbca (No. 61), a = 11.511(5) A, b = 18.772(5) A, c = 28.381 A (5), Z = 8; Cs(4)Mo(6)Br(12)Se(2), Pbca (No. 61), a = 11.6237(1) A, b = 18.9447(1) A, c = 28.4874(1) A, Z = 8; Cs(0.4)K(0.6)(Et(4)N)(11)[(Mo(6)Br(6)S(2))(CN)(6)](3).16H(2)O, Pm-3m (No. 221), a = 17.1969(4) A, Z = 1; Cs(0.4)K(0.6)(Et(4)N)(11)[(Mo(6)Br(6)Se(2))(CN)(6)](3).16H(2)O, Pm-3m (No. 221), a = 17.235(5) A, Z = 1.  相似文献   

13.
Two organically-templated layered uranium(IV) fluorooxalates, (H(4)TREN)[U(2)F(6)(C(2)O(4))(3)].4H(2)O (1) (TREN = tris(2-aminoethyl)amine) and (H(4)APPIP)[U(2)F(6)(C(2)O(4))(3)].4H(2)O (2) (APPIP = 1,4-bis(3-aminopropyl)piperazine), have been synthesized by hydrothermal methods and structurally characterized by single-crystal X-ray diffraction, thermogravimetric analysis, and magnetic susceptibility. Both structures consist of anionic [U(2)F(6)(C(2)O(4))(3)](4-) layers separated by organic ammonium cations and lattice water molecules. The UF(3)O(6) polyhedra are connected by oxalate ligands in different ways within the layers. They are the first examples of organically-templated uranium fluorooxalates. Crystal data for compound 1 follow: monoclinic, P2(1)/c (No. 14), a = 19.1563(5) A, b = 8.9531(2) A, c = 16.6221(4) A, beta = 114.633(1) degrees, and Z = 4. Crystal data for compound are the same as those for 1 except a = 10.3309(8) A, b = 15.564(1) A, c = 17.537(1) A, and beta = 95.430(4) degrees.  相似文献   

14.
The tetra-n-butylammonium (TBA) salt of [(MeO)TiW(5)O(18)](3-) 1 was reacted with alcohols ROH to give primary, secondary and tertiary alkoxide derivatives [(RO)TiW(5)O(18)](3-) (R = Et 2, (i)Pr 3 and (t)Bu 4), whilst hydrolysis afforded [(mu-O)(TiW(5)O(18))(2)](6-) 5 rather than the hydroxo derivative (R = H). In reactions with (i)PrOH and (t)BuOH, impurity peaks observed at 1015 and 1020 ppm in the (17)O NMR spectra indicate alkoxide degradation and Ti=O bond formation via reactions analogous to those occurring at the surfaces of solid heteropolyacids. Aryloxides [(ArO)TiW(5)O(18)](3-) were prepared by reacting 1 with phenols ArOH (Ar = C(6)H(5) 6, C(6)H(4)Me-4 7, C(6)H(4)(t)Bu-4 8, C(6)H(4)OH-4 9, C(6)H(4)OH-3 10, C(6)H(3)(OH)(2)-3,5 11 and C(6)H(4)CHO-2 13). TiW(5)O(18) units were linked by reacting 1 with 9 to give [(mu-1,4-OC(6)H(4)O)(TiW(5)O(18))(2)](6-) 12. (17)O and (183)W NMR spectra are reported and X-ray crystal structures were obtained for TBA salts of anions 3-10 and 13, which showed that the titanium is six-coordinate in all cases. Reactions were monitored by (1)H NMR, including a 2D-EXSY study of methoxo exchange, and the slow rates observed are probably associated with the reluctance of titanium in these anions to achieve seven-coordination.  相似文献   

15.
Addition of the new phosphonium carborane salts [HPR(3)][closo-CB(11)H(6)X(6)] (R = (i)Pr, Cy, Cyp; X = H 1a-c, X = Br 2a-c; Cy = C(6)H(11), Cyp = C(5)H(9)) to [Rh(nbd)(mu-OMe)](2) under a H(2) atmosphere gives the complexes Rh(PR(3))H(2)(closo-CB(11)H(12)) 3 (R = (i)Pr 3a, Cy 3b, Cyp 3c) and Rh(PR(3))H(2)(closo-CB(11)H(6)Br(6)) 4 (R = (i)Pr 4a, Cy 4b, Cyp 4c). These complexes have been characterised spectroscopically, and for 4b by single crystal X-ray crystallography. These data show that the {Rh(PR(3))H(2)}(+) fragment is interacting with the lower hemisphere of the [closo-CB(11)H(6)X(6)](-) anion on the NMR timescale, through three Rh-H-B or Rh-Br interactions for complexes 3 and 4 respectively. The metal fragment is fluxional over the lower surface of the cage anion, and mechanisms for this process are discussed. Complexes 3a-c are only stable under an atmosphere of H(2). Removing this, or placing under a vacuum, results in H(2) loss and the formation of the dimer species Rh(2)(PR(3))(2)(closo-CB(11)H(12))(2) 5a (R = (i)Pr), 5b (R = Cy), 5c (R = Cyp). These dimers have been characterised spectroscopically and for 5b by X-ray diffraction. The solid state structure shows a dimer with two closely associated carborane monoanions surrounding a [Rh(2)(PCy(3))(2)](2+) core. One carborane interacts with the metal core through three Rh-H-B bonds, while the other interacts through two Rh-H-B bonds and a direct Rh-B link. The electronic structure of this molecule is best described as having a dative Rh(I) --> Rh(III), d(8)--> d(6), interaction and a formal electron count of 16 and 18 electrons for the two rhodium centres respectively. Addition of H(2) to complexes 5a-c regenerate 3a-c. Addition of alkene (ethene or 1-hexene) to 5a-c or 3a-c results in dehydrogenative borylation, with 1, 2, and 3-B-vinyl substituted cages observed by ESI-MS: [closo-(RHC[double bond, length as m-dash]CH)(x)CB(11)H(12-x)](-)x = 1-3, R = H, C(4)H(9). Addition of H(2) to this mixture converts the B-vinyl groups to B-ethyl; while sequential addition of 4 cycles of ethene (excess) and H(2) to CH(2)Cl(2) solutions of 5a-c results in multiple substitution of the cage (as measured by ESI-MS), with an approximately Gaussian distribution between 3 and 9 substitutions. Compositionally pure material was not obtained. Complexes 4a-c do not lose H(2). Addition of tert-butylethene (tbe) to 4a gives the new complex Rh(P(i)Pr(3))(eta(2)-H(2)C=CH(t)Bu)(closo-CB(11)H(6)Br(6)) 6, characterised spectroscopically and by X-ray diffraction, which show coordination of the alkene ligand and bidentate coordination of the [closo-CB(11)H(6)Br(6)](-) anion. By contrast, addition of tbe to 4b or 4c results in transfer dehydrogenation to give the rhodium complexes Rh{PCy(2)(eta(2)-C(6)H(9))}(closo-CB(11)H(6)Br(6)) 7 and Rh{PCyp(2)(eta(2)-C(5)H(7))}(closo-CB(11)H(6)Br(6)) 9, which contain phosphine-alkene ligands. Complex has been characterised crystallographically.  相似文献   

16.
[Rh(Cp)Cl(mu-Cl)](2) (Cp = pentamethylcyclopentadienyl) reacts (i) with [Au(NH=CMe(2))(PPh(3))]ClO(4) (1:2) to give [Rh(Cp)(mu-Cl)(NH=CMe(2))](2)(ClO(4))(2) (1), which in turn reacts with PPh(3) (1:2) to give [Rh(Cp)Cl(NH=CMe(2))(PPh(3))]ClO(4) (2), and (ii) with [Ag(NH=CMe(2))(2)]ClO(4) (1:2 or 1:4) to give [Rh(Cp)Cl(NH=CMe(2))(2)]ClO(4) (3) or [Rh(Cp)(NH=CMe(2))(3)](ClO(4))(2).H(2)O (4.H(2)O), respectively. Complex 3 reacts (i) with XyNC (1:1, Xy = 2,6-dimethylphenyl) to give [Rh(Cp)Cl(NH=CMe(2))(CNXy)]ClO(4) (5), (ii) with Tl(acac) (1:1, acacH = acetylacetone) or with [Au(acac)(PPh(3))] (1:1) to give [Rh(Cp)(acac)(NH=CMe(2))]ClO(4) (6), (iii) with [Ag(NH=CMe(2))(2)]ClO(4) (1:1) to give 4, and (iv) with (PPN)Cl (1:1, PPN = Ph(3)P=N=PPh(3)) to give [Rh(Cp)Cl(imam)]Cl (7.Cl), which contains the imam ligand (N,N-NH=C(Me)CH(2)C(Me)(2)NH(2) = 4-imino-2-methylpentan-2-amino) that results from the intramolecular aldol-type condensation of the two acetimino ligands. The homologous perchlorate salt (7.ClO(4)) can be prepared from 7.Cl and AgClO(4) (1:1), by treating 3 with a catalytic amount of Ph(2)C=NH, in an atmosphere of CO, or by reacting 4with (PPN)Cl (1:1). The reactions of 7.ClO(4) with AgClO(4) and PTo(3) (1:1:1, To = C(6)H(4)Me-4) or XyNC (1:1:1) give [Rh(Cp)(imam)(PTo(3))](ClO(4))(2).H(2)O (8) or [Rh(Cp)(imam)(CNXy)](ClO(4))(2) (9), respectively. The crystal structures of 3 and 7.Cl have been determined.  相似文献   

17.
The reactions of UO(2)(C(2)H(3)O(2))(2).2H(2)O with K(2)TeO(3).H(2)O, Na(2)TeO(3) and TlCl, or Na(2)TeO(3) and Sr(OH)(2).8H(2)O under mild hydrothermal conditions yield K[UO(2)Te(2)O(5)(OH)] (1), Tl(3)[(UO(2))(2)[Te(2)O(5)(OH)](Te(2)O(6))].2H(2)O (2) and beta-Tl(2)[UO(2)(TeO(3))(2)] (3), or Sr(3)[UO(2)(TeO(3))(2)](TeO(3))(2) (4), respectively. The structure of 1 consists of tetragonal bipyramidal U(VI) centers that are bound by terminal oxo groups and tellurite anions. These UO(6) units span between one-dimensional chains of corner-sharing, square pyramidal TeO(4) polyhedra to create two-dimensional layers. Alternating corner-shared oxygen atoms in the tellurium oxide chains are protonated to create short/long bonding patterns. The one-dimensional chains of corner-sharing TeO(4) units found in 1 are also present in 2. However, in 2 there are two distinct chains present, one where alternating corner-shared oxygen atoms are protonated, and one where the chains are unprotonated. The uranyl moieties in 2 are bound by five oxygen atoms from the tellurite chains to create seven-coordinate pentagonal bipyramidal U(VI). The structures of 3 and 4 both contain one-dimensional [UO(2)(TeO(3))(2)](2-) chains constructed from tetragonal bipyramidal U(VI) centers that are bridged by tellurite anions. The chains differ between 3 and 4 in that all of the pyramidal tellurite anions in 3 have the same orientation, whereas the tellurite anions in 4 have opposite orientations on each side of the chain. In 4, there are also additional isolated TeO(3)(2-) anions present. Crystallographic data: 1, orthorhombic, space group Cmcm, a = 7.9993(5) A, b = 8.7416(6) A, c = 11.4413(8) A, Z = 4; 2, orthorhombic, space group Pbam, a = 10.0623(8) A, b = 23.024(2) A, c = 7.9389(6) A, Z = 4; 3, monoclinic, space group P2(1)/n, a = 5.4766(4) A, b = 8.2348(6) A, c = 20.849(3) A, beta = 92.329(1) degrees, Z = 4; 4, monoclinic, space group C2/c, a = 20.546(1) A, b = 5.6571(3) A, c = 13.0979(8) A, beta = 94.416(1) degrees, Z = 4.  相似文献   

18.
X-ray crystal structures are reported for the following complexes: [Ru(2)Cl(3)(tacn)(2)](PF(6))(2).4H(2)O (tacn = 1,4,7-triazacyclononane), monoclinic P2(1)/n, Z = 4, a = 14.418(8) ?, b = 11.577(3) ?, c = 18.471(1) ?, beta = 91.08(5) degrees, V = 3082 ?(3), R(R(w)) = 0.039 (0.043) using 4067 unique data with I > 2.5sigma(I) at 293 K; [Ru(2)Br(3)(tacn)(2)](PF(6))(2).2H(2)O, monoclinic P2(1)/a, Z = 4, a = 13.638(4) ?, b = 12.283(4) ?, c = 18.679(6) ?, beta = 109.19(2) degrees, V = 3069.5 ?(3), R(R(w)) = 0.052 (0.054) using 3668 unique data with I > 2.5sigma(I) at 293 K; [Ru(2)I(3)(tacn)(2)](PF(6))(2), cubic P2(1)/3, Z = 3, a = 14.03(4) ?, beta = 90.0 degrees, V = 2763.1(1) ?(3), R (R(w)) = 0.022 (0.025) using 896 unique data with I > 2.5sigma(I) at 293 K. All of the cations have cofacial bioctahedral geometries, although [Ru(2)Cl(3)(tacn)(2)](PF(6))(2).4H(2)O, [Ru(2)Br(3)(tacn)(2)](PF(6))(2).2H(2)O, and [Ru(2)I(3)(tacn)(2)](PF(6))(2) are not isomorphous. Average bond lengths and angles for the cofacial bioctahedral cores, [N(3)Ru(&mgr;-X)(3)RuN(3)](2+), are compared to those for the analogous ammine complexes [Ru(2)Cl(3)(NH(3))(6)](BPh(4))(2) and [Ru(2)Br(3)(NH(3))(6)](ZnBr(4)). The Ru-Ru distances in the tacn complexes are longer than those in the equivalent ammine complexes, probably as a result of steric interactions.  相似文献   

19.
The reaction of [Mo(3)S(4)(H(2)O)(9)](4+) (1) with [(CpRhCl(2))(2)] afforded a novel rhodium-molybdenum cluster, [{Mo(3)RhCpS(4)(H(2)O)(7)(O)}(2)](8+) (2). X-ray structure analysis of [2](pts)(8).14H(2)O (pts(-) = CH(3)C(6)H(4)SO(3)(-)) has revealed the existence of a new oxo-bridged twin cubane-type core, (Mo(3)RhCpS(4))(2)(O)(2). The high affinity of the CpRh group for sulfur atoms in 1 seems to be the main driving force for this reaction. The strong Lewis acidity of the CpRh group in intermediate A, [Mo(3)RhCpS(4)(H(2)O)(9)](6+), caused a release of proton from one of the water molecules attached to the molybdenum atoms to give intermediate B, [Mo(3)RhCpS(4)(H(2)O)(8)(OH)](5+). The elimination of two water molecules from two intermediate B molecules, followed by the deprotonation reaction of hydroxo bridges, generated the twin cubane-type cluster 2. The formal oxidation states of rhodium and molybdenum atoms are the same before and after the reaction (i.e., Mo(IV)(3), Rh(III)). The Mo-O-Mo moieties in [2](pts)(8).14H(2)O are nearly linear with a bond angle of 164.3(3) degrees, and the basicity of the bridging oxygen atoms seems to be weak. For this reason, protonation at the bridging oxygen atoms does not occur even in a strongly acidic aqueous solution. The binding energy values of Mo 3d(5/2), Rh 3d(5/2), and C 1s obtained from X-ray photoelectron spectroscopy measurements for [2](pts)(8).14H(2)O are 229.8, 309.3, and 285 eV, respectively. The XPS measurements on the Rh 3d(5/2) binding energy indicate that the oxidation state of Rh is 3+. The binding energy of Mo 3d(5/2) (229.8 eV) compares with that observed for [1](pts)(4).7H(2)O (230.7 eV, Mo 3d(5/2)). A lower energy shift (0.9 eV) is observed in the binding energy of Mo 3d(5/2) for [2](pts)(8).14H(2)O. This energy shift may correspond to the coordination of an oxygen atom having a negative charge to the molybdenum atom.  相似文献   

20.
A series of novel organically templated metal sulfates, [C(5)H(14)N(2)][M(II)(H(2)O)(6)](SO(4))(2) with (M(II) = Mn (1), Fe (2), Co (3) and Ni (4)), have been successfully synthesized by slow evaporation and characterized by single-crystal X-ray diffraction as well as with infrared spectroscopy, thermogravimetric analysis and magnetic measurements. All compounds were prepared using a racemic source of the 2-methylpiperazine and they crystallized in the monoclinic systems, P2(1)/n for (1, 3) and P2(1)/c for (2,4). Crystal data are as follows: [C(5)H(14)N(2)][Mn(H(2)O)(6)](SO(4))(2), a = 6.6385(10) ?, b = 11.0448(2) ?, c = 12.6418(2) ?, β = 101.903(10)°, V = 906.98(3) ?(3), Z = 2; [C(5)H(14)N(2)][Fe(H(2)O)(6)](SO(4))(2), a = 10.9273(2) ?, b = 7.8620(10) ?, c = 11.7845(3) ?, β = 116.733(10)°, V = 904.20(3) ?(3), Z = 2; [C(5)H(14)N(2)][Co(H(2)O)(6)](SO(4))(2), a = 6.5710(2) ?, b = 10.9078(3) ?, c = 12.5518(3) ?, β = 101.547(2)°, V = 881.44(4) ?(3), Z = 2; [C(5)H(14)N(2)][Ni(H(2)O)(6)](SO(4))(2), a = 10.8328(2) ?, b = 7.8443(10) ?, c = 11.6790(2) ?, β = 116.826(10)°, V = 885.63(2) ?(3), Z = 2. The three-dimensional structure networks for these compounds consist of isolated [M(II)(H(2)O)(6)](2+) and [C(5)H(14)N(2)](2+) cations and (SO(4))(2-) anions linked by hydrogen-bonds only. The use of racemic 2-methylpiperazine results in crystallographic disorder of the amines and creation of inversion centers. The magnetic measurements indicate that the Mn complex (1) is paramagnetic, while compounds 2, 3 and 4, (M(II) = Fe, Co, Ni respectively) exhibit single ion anisotropy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号