首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The novel cobalt corrolazine (Cz) complexes (TBP)(8)CzCoCN (1) and (TBP)(8)CzCo(CCSiPh(3)) (2) have been synthesized and examined in light of the recent intense interest regarding the role of corrole ligands in stabilizing high oxidation states. In the case of 2, the molecular structure has been determined by X-ray crystallography, revealing a short Co[bond]C distance of 1.831(4) A and an intermolecular pi-stacking interaction between Cz ring planes, and this structure has been analyzed in regards to the electronic configuration. By a combination of spectroscopic techniques it has been shown that 1 is best described as a cobalt(III)[bond]pi-cation-radical complex, whereas 2 is likely best represented as the resonance hybrid (Cz)Co(IV)(CCSiPh(3)) <--> (Cz+*)Co(III)(CCSiPh(3)). The reduced cobalt(II) complex, [(TBP)(8)CzCo(II)(py)](-), has been generated in situ and shown to bind dioxygen at low temperature to give [(TBP)(8)CzCo(III)(py)(O(2))](-). For the reduced complex [(TBP)(8)CzCo(II)(py)](-), the EPR spectrum in frozen solution is indicative of a low-spin cobalt(II) complex with a d(z)2 ground state. Exposure of [(TBP)(8)CzCo(II)(py)](-) to O(2) leads to the reversible formation of the cobalt(III)-superoxo complex [(TBP)(8)CzCo(III)(py)(O(2))](-), which has been characterized by EPR spectroscopy. VT-EPR measurements show that the dioxygen adduct is stable up to T approximately 240 K. This work is the first observation, to our knowledge, of O(2) binding to a cobalt(II) corrole.  相似文献   

2.
The direct conversion of a Mn(III) complex [(TBP(8)Cz)Mn(III) (1)] to a Mn(V)-oxo complex [(TBP(8)Cz)Mn(V)(O) (2)] with O(2) and visible light is reported. Complex 1 is also shown to function as an active photocatalyst for the oxidation of PPh(3) to OPPh(3). Mechanistic studies indicate that the photogeneration of 2 does not involve singlet oxygen but rather likely occurs via a free-radical mechanism upon photoactivation of 1.  相似文献   

3.
The bromocyclopentadienyl complex [(eta5-C5H4Br)Re(CO)3] is converted to racemic [(eta5-C5H4Br)Re(NO)(PPh3)(CH2PPh2)] (1 b) similarly to a published sequence for cyclopentadienyl analogues. Treatment of enantiopure (S)-[(eta5-C5H5)Re(NO)(PPh3)(CH3)] with nBuLi and I2 gives (S)-[(eta5-C5H4I)Re(NO)(PPh3)(CH3)] ((S)-6 c; 84 %), which is converted (Ph3C+ PF6 -, PPh2H, tBuOK) to (S)-[(eta5-C5H4I)Re(NO)(PPh3)(CH2PPh2)] ((S)-1 c). Reactions of 1 b and (S)-1 c with Pd[P(tBu)3]2 yield [{(eta5-C5H4)Re(NO)(PPh3)(mu-CH2PPh2)Pd(mu-X)}2] (10; X = b, Br, rac/meso, 88 %; c, I, S,S, 22 %). Addition of PPh3 to 10 b gives [(eta5-C5H4)Re(NO)(PPh3)(mu-CH2PPh2)Pd(PPh3)(Br)] (11 b; 92 %). Reaction of (S)-[(eta5-C5H5)Re(NO)(PPh3)(CH2PPh2)] ((S)-2) and Pd(OAc)(2) (1.5 equiv; toluene, RT) affords the novel Pd3(OAc)4-based palladacycle (S,S)-[(eta5-C5H4)Re(NO)(PPh3)(mu-CH2PPh2)Pd(mu-OAc)2Pd(mu-OAc)2Pd(mu-PPh2CH2)(Ph3P)(ON)Re(eta5-C5H4)] ((S,S)-13; 71-90 %). Addition of LiCl and LiBr yields (S,S)-10 a,b (73 %), and Na(acac-F6) gives (S)-[(eta5-C5H4)Re(NO)(PPh3)(mu-CH2PPh2)Pd(acac-F6)] ((S)-16, 72 %). Reaction of (S,S)-10 b and pyridine affords (S)-[(eta5-C5H4)Re(NO)(PPh3)(mu-CH2PPh2)Pd(NC5H5)(Br)] ((S)-17 b, 72 %); other Lewis bases yield similar adducts. Reaction of (S)-2 and Pd(OAc)2 (0.5 equiv; benzene, 80 degrees C) gives the spiropalladacycle trans-(S,S)-[{(eta5-C5H4)Re(NO)(PPh3)(mu-CH2PPh2)}2Pd] (39 %). The crystal structures of (S)-6 c, 11 b, (S,S)- and (R,R)-132 C7H8, (S,S)-10 b, and (S)-17 b aid the preceding assignments. Both 10 b (racemic or S,S) and (S)-16 are excellent catalyst precursors for Suzuki and Heck couplings.  相似文献   

4.
Combined electrochemical and UV-visible spectroelectrochemical methods were utilized to elucidate the prevailing mechanisms for electroreduction of previously synthesized porphyrin-corrole dyads of the form (PCY)H2Co and (PCY)MClCoCl where M = Fe(III) or Mn(III), PC = porphyrin-corrole, and Y is a bridging group, either biphenylenyl (B), 9,9-dimethylxanthenyl (X), anthracenyl (A), or dibenzofuranyl (O). These studies were carried out in pyridine, conditions under which the cobalt(IV) corrole in (PCY)MClCoCl is immediately reduced to its Co(III) form, thus enabling direct comparisons with the free-base porphyrin dyad, (PCY)H2Co(III) under the same solution conditions. The compounds are all reduced in multiple one-electron-transfer steps, the first of which involves the M(III)/M(II) process of the porphyrin in the case of (PCY)MClCoCl and the Co(III)/Co(II) process of the corrole in the case of (PCY)H2Co. Each metal-centered redox reaction may be accompanied by the gain or loss of pyridine axial ligands, with the exact stoichiometry of the exchange process depending upon the specific combination of metal ions in the dyad, their oxidation states, and the particular spacer in the complex. Before this study was started, it was expected that the porphyrin-corrole dyads with the largest spacers, namely, O and A, would readily accommodate the formation of cobalt(III) bis-pyridine adducts because of the larger size of the cavity while dyads with the smallest B spacer would seem to have insufficient room to add even a single pyridine within the cavity, as was structurally seen in the case of (PCB)H2Co(py). This is clearly not the case, as shown in the present study. A reversible Co(III)/Co(II) reaction is seen for (PCB)MnClCoCl at -0.62 V, which when combined with spectroscopic data, leads to the assignment of (PCB)Mn(III)(py)2Co(III)(py) as the species in pyridine. The reduction of (PCB)Mn(III)(py)2Co(III)(py) to (PCB)Mn(II)(py)Co(III)(py) is accompanied on the slower spectroelectrochemical time scale by the appearance of a 603 nm band in the UV-vis spectra and is consistent with the addition of a second pyridine ligand to the Co(III)(py) unit of the dyad as one ligand is lost from the electrogenerated manganese(II) porphyrin, thus maintaining one pyridine ligand within the cavity. A different change in the coordination number is observed in the case of (PCB)FeClCoCl. Here the initial Fe(III) complex can be assigned as (PCB)Fe(III)ClCo(III)(py), which has no pyridine molecule within the cavity and the singly reduced form is characterized as (PCB)Fe(II)(py)2Co(III)(py)2, which contains two pyridine ligands inside the cavity. A following one-electron reduction of the Fe(II)/Co(III) complex then gives [(PCB)Fe(II)(py)2Co(II)]-.  相似文献   

5.
As part of our efforts to develop the transition metal chemistry of corrolazines, which are ring-contracted porphyrinoid species most closely related to corroles, the vanadium and copper complexes (TBP)(8)Cz(H)V(IV)O (1) and (TBP)(8)CzCu(III) (2) of the ligand octakis(para-tert-butylphenyl)corrolazine [(TBP)(8)Cz] have been synthesized. The coordination behavior, preferred oxidation states, and general redox properties of metallocorrolazines are of particular interest. The corrolazine ligand in 1 was shown to contain a labile proton by acid/base titration and IR spectroscopy, serving as a -2 ligand rather than as the usual -3 donor. The oxidation state of the vanadium center in 1 was shown to be +4, in agreement with the overall neutral charge for this complex. The EPR spectrum of 1 reveals a rich signal consistent with a V(IV)(O) (d(1), S = 1/2) porphyrinoid species (g(xx) = 1.989, g(yy) = 1.972, g(zz) = 1.962). The electrochemical analysis of 1 shows behavior closer to that of a porphyrazine than a corrolazine, with a positively shifted, irreversible reduction at -0.65 V (vs Ag/AgCl). Resonance Raman and IR data for 1 confirm the presence of a triply bonded terminal oxo ligand with nu(V(16)O) = 975 cm(-1) and nu(V(18)O) = 939 cm(-1). The copper complex 2 exhibits a diamagnetic (1)H NMR spectrum, indicative of a bona fide square planar copper(III) (d(8), low-spin) complex. Previously reported copper corroles have been characterized as copper(III) complexes which exhibit a paramagnetic NMR spectrum at higher temperatures, indicative of a thermally accessible triplet excited state ([(corrole(*+))Cu(II)]). The NMR spectrum for 2 shows no paramagnetic behavior in the range 300-400 K, indicating that compound 2 does not have a thermally accessible triplet excited state. These data show that the corrolazine system is better able to stabilize the high oxidation state copper center than the corresponding corroles. Electrochemical studies of 2 reveal two reversible processes at +0.93 and -0.05 V, and bulk reduction of 2 with NaBH(4) generates the copper(II) species [(TBP)(8)CzCu(II)](-) (2a), which exhibits an EPR signal typical of a copper(II) porphyrinoid species.  相似文献   

6.
The metathetical reaction of [Li(TMEDA)][HC(PPh(2)Se)(2)] ([Li(TMEDA)]1) with TlOEt in a 1:1 molar ratio afforded a homoleptic Tl(I) complex as an adduct with LiOEt, Tl[HC(PPh(2)Se)(2)]·LiOEt (7), which undergoes selenium-proton exchange upon mild heating (60 °C) to give the mixed-valent Tl(I)/Tl(III) complex {[Tl][Tl{(Se)C(PPh(2)Se)(2)}(2)]}(∞) (8). Treatment of TlOEt with [Li(TMEDA)](2)[(SPh(2)P)(2)CE'E'C(PPh(2)S)(2)] (3b, E' = S; 3c, E' = Se) in a 2:1 molar ratio produced the binuclear Tl(i)/Tl(i) complexes Tl(2)[(SPh(2)P)(2)CE'E'C(PPh(2)S)(2)] (9b, E' = S; 9c, E' = Se), respectively. Selenium-proton exchange also occurred upon addition of [Li(TMEDA)]1 to InCl(3) to yield the heteroleptic complex (TMEDA)InCl[(Se)C(PPh(2)Se)(2)] (10a). Other examples of this class of In(III) complex, (TMEDA)InCl[(E')C(PPh(2)E)(2)] (10b, E = E' = S; 10c, E = S, E' = Se) were obtained via metathesis of InCl(3) with [Li(TMEDA)](2)[(E')C(PPh(2)E)(2)] (2b, E = E' = S; 2c, E = S, E' = Se, respectively). All new compounds have been characterized in solution by (1)H and (31)P NMR spectroscopy and the solid-state structures have been determined for 8, 9c and 10a-c by single-crystal X-ray crystallography. Complex 8 is comprised of Tl(+) ions that are weakly coordinated to octahedral [Tl{(Se)C(PPh(2)Se)(2)}(2)](-) anions to give a one-dimensional polymer. The complex 9c is comprised of two four-coordinate Tl(+) ions that are each S,S',S',Se bonded to the hexadentate [(SPh(2)P)(2)CSeSeC(PPh(2)S)(2)](2-) ligand in which d(Se-Se) = 2.531(2) ?. The six-coordinate In(III) centres in the distorted octahedral complexes 10a-c are connected to a tridentate [(E')C(PPh(2)E)(2)](2-) dianion, a chloride ion and a neutral bidentate TMEDA ligand.  相似文献   

7.
The half-sandwich complexes [(eta5-C5H5)RuCl(DPEphos)] (1) and [{(eta6-p-cymene)RuCl2}2(mu-DPEphos)] (2) were synthesized by the reaction of bis(2-(diphenylphosphino)phenyl) ether (DPEphos) with a mixture of ruthenium trichloride trihydrate and cyclopentadiene and with [(eta6-p-cymene)RuCl2]2, respectively. Treatment of DPEphos with cis-[RuCl2(dmso)4] afforded fac-[RuCl2(kappa3-P,O,P-DPEphos)(dmso)] (3). The dmso ligand in 3 can be substituted by pyridine, 2,2'-bipyridine, 4,4'-bipyridine, and PPh3 to yield trans,cis-[RuCl2(DPEphos)(C5H5N)2] (4), cis,cis-[RuCl2(DPEphos)(2,2'-bipyridine)] (5), trans,cis-[RuCl2(DPEphos)(mu-4,4'-bipyridine)]n (6), and mer,trans-[RuCl2(kappa3-P,P,O-DPEphos)(PPh3)] (7), respectively. Refluxing [(eta6-p-cymene)RuCl2]2 with DPEphos in moist acetonitrile leads to the elimination of the p-cymene group and the formation of the octahedral complex cis,cis-[RuCl2(DPEphos)(H2O)(CH3CN)] (8). The structures of the complexes 1-5, 7, and 8 are confirmed by X-ray crystallography. The catalytic activity of these complexes for the hydrogenation of styrene is studied.  相似文献   

8.
Complexes [Pt(mu-N,S-8-TT)(PPh(3))(2)](2) (1), [Pt(mu-S,N-8-TT)(PTA)(2)](2) (2), [Pt(8-TTH)(terpy)]BF(4) (3), cis-[PtCl(8-MTT)(PPh(3))(2)] (4), cis-[Pt(8-MTT)(2)(PPh(3))(2)] (5), cis-[Pt(8-MTT)(8-TTH)(PPh(3))(2)] (6), cis-[PtCl(8-MTT)(PTA)(2)] (7), cis-[Pt(8-MTT)(2)(PTA)(2)] (8), and trans-[Pt(8-MTT)(2)(py)(2)] (9) (8-TTH(2) = 8-thiotheophylline; 8-MTTH = 8-(methylthio)theophylline; PTA = 1,3,5-triaza-7-phosphaadamantane) are presented and studied by IR and multinuclear ((1)H, (31)P[(1)H]) NMR spectroscopy. The solid-state structure of 4 and 9 has been authenticated by X-ray crystallography. Growth inhibition of the cancer cells T2 and SKOV3 induced by the above new thiopurine platinum complexes has been investigated. The activity shown by complexes 4 and 9 was comparable with cisplatin on T2. Remarkably, 4 and 9 displayed also a valuable activity on cisplatin-resistant SKOV3 cancer cells.  相似文献   

9.
The reaction of the neutral binuclear complexes [(R(F))(2)Pt(μ-PPh(2))(2)M(phen)] (phen = 1,10-phenanthroline, R(F) = C(6)F(5); M = Pt, 1; M = Pd, 2) with AgClO(4) or [Ag(OClO(3))(PPh(3))] affords the trinuclear complexes [AgPt(2)(μ-PPh(2))(2)(R(F))(2)(phen)(OClO(3))] (7a) or [AgPtM(μ-PPh(2))(2)(R(F))(2)(phen)(PPh(3))][ClO(4)] (M = Pt, 8; M = Pd, 9), which display an "open-book" type structure and two (7a) or one (8, 9) Pt-Ag bonds. The neutral diphosphine complexes [(R(F))(2)Pt(μ-PPh(2))(2)M(P-P)] (P-P = 1,2-bis(diphenylphosphino)methane, dppm, M = Pt, 3; M = Pd, 4; P-P = 1,2-bis(diphenylphosphino)ethane, dppe, M = Pt, 5; M = Pd, 6) react with AgClO(4) or [Ag(OClO(3))(PPh(3))], and the nature of the resulting complexes is dependent on both M and the diphosphine. The dppm Pt-Pt complex 3 reacts with [Ag(OClO(3))(PPh(3))], affording a silver adduct 10 in which the Ag atom interacts with the Pt atoms, while the dppm Pt-Pd complex 4 reacts with [Ag(OClO(3))(PPh(3))], forming a 1:1 mixture of [AgPdPt(μ-PPh(2))(2)(R(F))(2)(OClO(3))(dppm)] (11), in which the silver atom is connected to the Pt-Pd moiety through Pd-(μ-PPh(2))-Ag and Ag-P(k(1)-dppm) interactions, and [AgPdPt(μ-PPh(2))(2)(R(F))(2)(OClO(3))(PPh(3))(2)][ClO(4)] (12). The reaction of complex 4 with AgClO(4) gives the trinuclear derivative 11 as the only product. Complex 11 shows a dynamic process in solution in which the silver atom interacts alternatively with both Pd-μPPh(2) bonds. When P-P is dppe, both complexes 5 and 6 react with AgClO(4) or [Ag(OClO(3))(PPh(3))], forming the saturated complexes [(PPh(2)C(6)F(5))(R(F))Pt(μ-PPh(2))(μ-OH)M(dppe)][ClO(4)] (M = Pt, 13; Pd, 14), which are the result of an oxidation followed by a PPh(2)/C(6)F(5) reductive coupling. Finally, the oxidation of trinuclear derivatives [(R(F))(2)Pt(II)(μ-PPh(2))(2)Pt(II)(μ-PPh(2))(2)Pt(II)L(2)] (L(2) = phen, 15; L = PPh(3), 16) by AgClO(4) results in the formation of the unsaturated 46 VEC complexes [(R(F))(2)Pt(III)(μ-PPh(2))(2)Pt(III)(μ-PPh(2))(2)Pt(II)L(2)][ClO(4)](2) (17 and 18, respectively) which display Pt(III)-Pt(III) bonds.  相似文献   

10.
Reaction of [Os(VI)(N)(L(1))(Cl)(OH(2))] (1) with CN(-) under various conditions affords (PPh(4))[Os(VI)(N)(L(1))(CN)(Cl)] (2), (PPh(4))(2)[Os(VI)(N)(L(2))(CN)(2)] (3), and a novel hydrogen cyanamido complex, (PPh(4))(2)[Os(III){N(H)CN}(L(3))(CN)(3)] (4). Compound 4 reacts readily with both electrophiles and nucleophiles. Protonation and methylation of 4 produce (PPh(4))[Os(III)(NCNH(2))(L(3))(CN)(3)] (5) and (PPh(4))[Os(III)(NCNMe(2))(L(3))(CN)(3)] (6), respectively. Nucleophilic addition of NH(3), ethylamine, and diethylamine readily occur at the C atom of the hydrogen cyanamide ligand of 4 to produce osmium guanidine complexes with the general formula [Os(III){N(H)C(NH(2))NR(1)R(2)}(L(3))(CN)(3)](-) , which have been isolated as PPh(4) salts (R(1) = R(2) = H (7); R(1) = H, R(2) = CH(2)CH(3) (8); R(1) = R(2) = CH(2)CH(3) (9)). The molecular structures of 1-5 and 7 and 8 have been determined by X-ray crystallography.  相似文献   

11.
The complexes [(H3N)5Ru(II)(mu-NC)Mn(I)Lx]2+, prepared from [Ru(OH2)(NH3)5]2+ and [Mn(CN)L(x)] {L(x) = trans-(CO)2{P(OPh)3}(dppm); cis-(CO)2(PR3)(dppm), R = OEt or OPh; (PR3)(NO)(eta-C5H4Me), R = Ph or OPh}, undergo two sequential one-electron oxidations, the first at the ruthenium centre to give [(H3N)5Ru(III)(mu-NC)Mn(I)Lx]3+; the osmium(III) analogues [(H3N)5Os(III)(mu-NC)Mn(I)Lx]3+ were prepared directly from [Os(NH3)5(O3SCF3)]2+ and [Mn(CN)Lx]. Cyclic voltammetry and electronic spectroscopy show that the strong solvatochromism of the trications depends on the hydrogen-bond accepting properties of the solvent. Extensive hydrogen bonding is also observed in the crystal structures of [(H3N)5Ru(III)(mu-NC)Mn(I)(PPh3)(NO)(eta-C5H4Me)][PF6]3.2Me2CO.1.5Et2O, [(H3N)5Ru(III)(mu-NC)Mn(I)(CO)(dppm)2-trans][PF6]3.5Me2CO and [(H3N)5Ru(III)(mu-NC)Mn(I)(CO)2{P(OEt)3}(dppm)-trans][PF6]3.4Me2CO, between the amine groups (the H-bond donors) at the Ru(III) site and the oxygen atoms of solvent molecules or the fluorine atoms of the [PF6]- counterions (the H-bond acceptors).  相似文献   

12.
Reactions of the iridium(III) nitrosyl complex [Ir(NO)Cl2(PPh3)2] (1) with hydrosulfide and arenethiolate anions afforded the square-pyramidal iridium(III) complex [Ir(NO)(SH)2(PPh3)2] (2) with a bent nitrosyl ligand and a series of the square-planar iridium(I) complexes [Ir(NO)(SAr)2(PPh3)] (3a, Ar = C6H2Me3-2,4,6 (Mes); 3b, Ar = C6H3Me2-2,6 (Xy); 3c, Ar = C6H2Pri3-2,4,6) containing a linear nitrosyl ligand, respectively. Complex 1 also reacted with alkanethiolate anions or alkanethiols to give the thiolato-bridged diiridium complexes [Ir(NO)(mu-SPri)(SPri)(PPh3)]2 (4) and [Ir(NO)(mu-SBut)(PPh3)]2 (5). Complex 4 contains two square-pyramidal iridium(III) centers with a bent nitrosyl ligand, whereas 5 contains two tetrahedral iridium(0) centers with a linear nitrosyl ligand and has an Ir-Ir bond. Upon treatment with benzoyl chloride, 3a and 3b were converted into the (diaryl disulfide)- and thiolato-bridged dichlorodiiridium(III) complexes [[IrCl(mu-SC6HnMe4-nCH2)(PPh3)]2(mu-ArSSAr)] (6a, Ar = Mes, n = 2; 6b, Ar = Xy, n = 3) accompanied by a loss of the nitrosyl ligands and cleavage of a C-H bond in an ortho methyl group of the thiolato ligands. Similar treatment of 4 gave the dichlorodiiridium complex [Ir(NO)(PPh3)(mu-SPri)3IrCl2(PPh3)] (7), which has an octahedral dichloroiridium(III) center and a distorted trigonal-bipyramidal Ir(I) atom with a linear nitrosyl ligand. The detailed structures of 3a, 4, 5, 6a, and 7 have been determined by X-ray crystallography.  相似文献   

13.
A variety of gold(III) and gold(I) derivatives of 2-(2'-pyridyl)benzimidazole (pbiH) were synthesized and fully characterized and their antiproliferative properties evaluated in a representative ovarian cancer cell line. The complexes include the mononuclear species [(pbi)AuX(2)] (X = Cl, 1; OAc, 2), [(pbiH)AuCl] (3), [(pbiH)Au(PPh(3))][PF(6)] (4-PF(6)), and [(pbi)Au(L)] (L = PPh(3), 5; TPA, 6), and the binuclear gold(I)/gold(I) and gold(I)/gold(III) derivatives [(PPh(3))(2)Au(2)(μ(2)-pbi)][PF(6)] (10-PF(6)), [ClAu(μ(3)-pbi)AuCl(2)] (7),and [(PPh(3))Au(μ(3)-pbi)AuX(2)][PF(6)] (X = Cl, 8-PF(6); OAc, 9-PF(6)). The molecular structures of 6, 7, and 10-PF(6) were determined by X-ray diffraction analysis. The chemical behavior of these compounds in solution was analyzed both by cyclic voltammetry in DMF and absorption UV-vis spectroscopy in an aqueous buffer. Overall, the stability of these gold compounds was found to be acceptable for the cellular studies. For all complexes, relevant antiproliferative activities in vitro were documented against A2780 human ovarian carcinoma cells, either resistant or sensitive to cisplatin, with IC(50) values falling in the low micromolar or even in the nanomolar range. The investigated gold compounds were found to overcome resistance to cisplatin to a large degree. Results are interpreted and discussed in the frame of current knowledge on cytotoxic and antitumor gold compounds.  相似文献   

14.
A series of ruthenium(II) acetonitrile, pyridine (py), carbonyl, SO2, and nitrosyl complexes [Ru(bdmpza)(O2CR)(L)(PPh3)] (L = NCMe, py, CO, SO2) and [Ru(bdmpza)(O2CR)(L)(PPh3)]BF4 (L = NO) containing the bis(3,5-dimethylpyrazol-1-yl)acetato (bdmpza) ligand, a N,N,O heteroscorpionate ligand, have been prepared. Starting from ruthenium chlorido, carboxylato, or 2-oxocarboxylato complexes, a variety of acetonitrile complexes [Ru(bdmpza)Cl(NCMe)(PPh3)] (4) and [Ru(bdmpza)(O2CR)(NCMe)(PPh3)] (R = Me (5a), R = Ph (5b)), as well as the pyridine complexes [Ru(bdmpza)Cl(PPh3)(py)] (6) and [Ru(bdmpza)(O2CR)(PPh3)(py)] (R = Me (7a), R = Ph (7b), R = (CO)Me (8a), R = (CO)Et (8b), R = (CO)Ph) (8c)), have been synthesized. Treatment of various carboxylato complexes [Ru(bdmpza)(O2CR)(PPh3)2] (R = Me (2a), Ph (2b)) with CO afforded carbonyl complexes [Ru(bdmpza)(O2CR)(CO)(PPh3)] (9a, 9b). In the same way, the corresponding sulfur dioxide complexes [Ru(bdmpza)(O2CMe)(PPh3)(SO2)] (10a) and [Ru(bdmpza)(O2CPh)(PPh3)(SO2)] (10b) were formed in a reaction of the carboxylato complexes with gaseous SO2. None of the 2-oxocarboxylato complexes [Ru(bdmpza)(O2C(CO)R)(PPh3)2] (R = Me (3a), Et (3b), Ph (3c)) showed any reactivity toward CO or SO2, whereas the nitrosyl complex cations [Ru(bdmpza)(O2CMe)(NO)(PPh3)](+) (11) and [Ru(bdmpza)(O2C(CO)Ph)(NO)(PPh3)](+) (12) were formed in a reaction of the acetato 2a or the benzoylformato complex 3c with an excess of nitric oxide. Similar cationic carboxylato nitrosyl complexes [Ru(bdmpza)(O2CR)(NO)(PPh3)]BF4 (R = Me (13a), R = Ph (13b)) and 2-oxocarboxylato nitrosyl complexes [Ru(bdmpza)(O2C(CO)R)(NO)(PPh3)]BF4 (R = Me (14a), R = Et (14b), R = Ph (14c)) are also accessible via a reaction with NO[BF4]. X-ray crystal structures of the chlorido acetonitrile complex [Ru(bdmpza)Cl(NCMe)(PPh3)] (4), the pyridine complexes [Ru(bdmpza)(O2CMe)(PPh3)(py)] (7a) and [Ru(bdmpza)(O2CC(O)Et)(PPh3)(py)] (8b), the carbonyl complex [Ru(bdmpza)(O2CPh)(CO)(PPh3)] (9b), the sulfur dioxide complex [Ru(bdmpza)(O2CPh)(PPh3)(SO2)] (10b), as well as the nitrosyl complex [Ru(bdmpza)(O2C(CO)Me)(NO)(PPh3)]BF4 (14a), are reported. The molecular structure of the sulfur dioxide complex [Ru(bdmpza)(O2CPh)(PPh3)(SO2)] (10b) revealed a rather unusual intramolecular SO2-O2CPh Lewis acid-base adduct.  相似文献   

15.
The new gold(III) complexes: [Au{2-(2'-pyridyl)imidazolate}Cl(2)] and [Au{2,6-bis(2'-benzimidazolate)pyridine}(OCOCH(3))] and the mono- and binuclear gold(I) complexes: [Au{2-(2'-pyridyl)imidazole}(PPh(3))](PF(6)), [Au(2-phenylimidazolate)(DAPTA)] (DAPTA = 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane), [(PPh(3)Au)(2)(2-R-imidazolate)](PF(6)) (R = 2-C(5)H(4)N, Ph) have been synthesized and characterized. The structure of the [(PPh(3)Au)(2){2-(2'-pyridyl)imidazolate)](PF(6)) complex was also characterized by X-ray crystallography. The antiproliferative properties of the complexes were assayed against human ovarian carcinoma cell lines, either sensitive (A2780) or resistant to cisplatin (A2780cisR), human mammary carcinoma cells (MCF7) and non-tumorigenic human kidney (HEK293) cells. Most of the studied compounds showed important cytotoxic effects. Interestingly, the compounds containing the 2-(2'-pyridyl)imidazolate ligand showed selectivity towards cancer cells with respect to the non-tumorigenic ones, with the dinuclear compound [(PPh(3)Au)(2){2-(2'-pyridyl)imidazolate)](PF(6)) being the most active. Some compounds were also screened for their inhibitory effect of the zinc-finger protein PARP-1, essential for DNA repair and relevant to the mechanisms of cancer cell resistance to cisplatin. Interaction studies of the compounds with the model protein ubiquitin were undertaken by electrospray ionization mass spectrometry (ESI MS). The results are discussed in relation to the putative mechanisms of action of the cytotoxic gold compounds.  相似文献   

16.
Reaction of chloranilic acid (H2ca) with [Os(bpy)2 Br2] (bpy = 2,2'-bipyridine) affords a dinuclear complex of type [{Os(bpy)2}2 (ca)]2+, isolated as the perchlorate salt. A similar reaction of H2ca with [Os(PPh3)2 (pap)Br2] (pap = 2-(phenylazo)pyridine) affords a dinuclear complex of type [{Os(PPh3)2 (pap)}2 (ca)]2+ (isolated as the perchlorate salt) and a mononuclear complex of type [Os(PPh3)2 (pap)(ca)]. Reaction of H2ca with [Os(PPh3)2(CO)2(HCOO)2] gives a dinuclear complex of type [{Os(PPh3)2(CO)2}2 (r-ca)], where r-ca is the two electron reduced form of the chloranilate ligand. The structures of the [{Os(PPh3)2 (pap)}2 (ca)](ClO4)2, [Os(PPh3)2 (pap)(ca)], and [{Os(PPh3)2(CO)2}2 (r-ca)] complexes have been determined by X-ray crystallography. In the [{Os(bpy)2}2 (ca)]2+ and [{Os(PPh3)2 (pap)}2 (ca)]2+ complexes, the chloranilate dianion is serving as a tetradentate bridging ligand. In the [Os(PPh3)2 (pap)(ca)] complex, the chloranilate dianion is serving as a bidentate chelating ligand. In the [{Os(PPh3)2(CO)2}2 (r-ca)] complex, the reduced form of the chloranilate ligand (r-ca(4-)) is serving as a tetradentate bridging ligand. All the four complexes are diamagnetic and show intense metal-to-ligand charge-transfer transitions in the visible region. The [Os(PPh3)2 (pap)(ca)] complex shows an Os(II)-Os(III) oxidation, followed by an Os(III)-Os(IV) oxidation on the positive side of a standard calomel electrode. The three dinuclear complexes show two successive oxidations on the positive side of SCE. The mixed-valent Os(II)-Os(III) species have been generated in the case of the two chloranilate-bridged complexes by coulometric oxidation of the homovalent Os(II)-Os(II) species. The mixed-valent Os(II)-Os(III) species show intense intervalence charge-transfer transitions in the near-IR region.  相似文献   

17.
X-ray structures of Co(III)[(CF(3))(3)Cor](PPh(3)) [(CF(3))(3)Cor = meso-tris(trifluoromethyl)corrolato] and Cu[(CF(3))(4)Por] [(CF(3))(4)Por = meso-tetrakis(trifluoromethyl)porphyrinato] revealed planar and highly ruffled macrocycle conformations, respectively, in line with analogous observations for a handful of other meso-perfluoroalkylated porphyrins and corroles reported in the literature. To gain insights into the difference in conformational behavior, we evaluated DFT (BP86-D/TZP) ruffling potentials for a variety of corrole complexes, as well as their porphyrin analogues. The calculations led us to conclude that corrole derivatives, in essence, cannot ruffle.  相似文献   

18.
Novel heterobimetallic complexes [(PPh(3))(2)Cu(μ-SCOPh)(2)Cd(SCOPh)] (2a), [(PPh(3))(2)Cu(μ-SCOth)(2)Cd(SCOth)] (2b), [(PPh(3))(2)Ag(μ-SCOth)(2)Cd(SCOth)] (3a), [(PPh(3))(2)Ag(μ-SCOth)(2)Cd(H(2)O)(SCOth)] (3b), [(PPh(3))(2)Ag(μ-SCOPh)(2)Cd(SCOPh)] (3c), and a bimetallic complex [PPh(3)Cd(μ-SCOth)SCOth](2)·CH(2)Cl(2) (5) (th = thiophene) were prepared and characterized by single crystal X-ray diffraction analysis. A coordination polymer [Cd(SCOPh)(2)](n) (4) has also been characterized structurally that exhibited metal-like electrical conductivity. The heterobimetallic complexes on pyrolyzing under controlled conditions yielded ternary sulfides of composition CuCd(7)S(8), CuCd(10)S(11), Ag(2)Cd(8)S(9), and Ag(2)Cd(5)S(6), which have been characterized by SEM-EDX and X-ray diffractometry. Photophysical properties and electrical conductivities of the sulfides have also been studied.  相似文献   

19.
The reaction of [NBu(4)](2)[(C(6)F(5))(2)Pt(μ-PPh(2))(2)Pd(μ-PPh(2))(2)Pt(C(6)F(5))(2)] (1a) with [AgPPh(3)](+) results in the oxidation of two bridging diphenylphosphanides to give the 46e species [(PPh(3))(C(6)F(5))(2)Pt(2)(μ-P(2)Ph(2))Pd(μ-PPh(2))(μ-Ph(2)P(4)-P(3)Ph(2))Pt(1)(C(6)F(5))(2)] (3). Complex 3 displays two tetracoordinated terminal platinum centers and a central Pd atom that is bonded to three P atoms and that completes its coordination sphere by a rather long (3.237 ?) dative Pt(2) → Pd bond. Complex 3 is also obtained when [(R(F))(2)Pt(μ-PPh(2))Pd(μ-PPh(2))(μ-Ph(2)P-PPh(2))Pt(R(F))(2)] (2) is reacted with PPh(3). Analogously, the addition of PPh(2)Et, CO or pyridine to 2 affords the 46e complexes of general formula [(L)(C(6)F(5))(2)Pt(2)(μ-P(2)Ph(2))Pd(μ-PPh(2))(μ-Ph(2)P(4)-P(3)Ph(2))Pt(1)(C(6)F(5))(2)] (L = PPh(2)Et, 4; L = CO, 6; L = pyridine, 7). The geometry around Pt(2) is determined by the bulkiness of L bonded to Pt. Thus, in complexes 3 (L = PPh(3)) and 4 (L = PPh(2)Et), the ligand L occupies the trans position with respect to μ-P(2), and in 6 (L = CO), the ligand L occupies the cis position with respect to μ-P(2). Interestingly, for 7 (L = py), both isomers 7-trans and 7-cis, could be isolated. Although 4 did not react with an excess of PPh(2)Et, the reaction with the less sterically demanding CH(3)CN ligand resulted in the opening of the Pt(2)-P(2)-Pd cycle with formation of the saturated 48e species [(PPh(2)Et)(C(6)F(5))(2)Pt(μ-PPh(2))Pd(MeCN)(μ-PPh(2))(μ-Ph(2)P-PPh(2))Pt(C(6)F(5))(2)] (8). The saturated 48e complex [(CO)(C(6)F(5))(2)Pt(μ-PPh(2))Pd(MeCN)(μ-PPh(2))(μ-Ph(2)P-PPh(2))Pt(C(6)F(5))(2)] (9) was obtained by acetonitrile addition to 6. Beside the hindered rotation of the pentafluorophenyl groups and a flip-flop motion of the Pd-P-Pt(1)-P-P ring observed at low T, a rotation about the Pt(2)-P(2) bond and a P-C oxidative addition/reductive elimination process occur for 3 and 4 at room temperature. A "through-space" (19)F-(31)P spin-spin coupling between an ortho-F and the P(4) is observed for complexes 3 and 4, having the C(6)F(5) groups bonded to Pt(2) in mutually trans position. The XRD structures of complexes 3, 6, 7-trans, 7-cis, 8, and 9 are described.  相似文献   

20.
The coordination chemistry of the ligands 2-anilino-4,6-di-tert-butylphenol, H[L(AP)], and N,N"'-bis[2-(4,6-di-tert-butylphenol]diethylenetriamine, H(2)[(L(AP))N(L(AP))], has been studied with the first-row transition metal ions V, Cr, Fe, and Co. The ligands are noninnocent in the sense that the aminophenolato parts, [L(AP)](-) and [L(AP)-H](2)(-), can be readily oxidized to their o-iminobenzosemiquinonato, [L(ISQ)](-), and o-iminobenzoquinone, [L(ISB)], forms. The following neutral octahedral complexes have been isolated as crystalline materials, and their crystal structures have been determined by X-ray crystallography at 100 K: [Cr(III)(L(ISQ))(3)] (1), [Fe(III)(L(ISQ))(3)] (2), [Co(III)(L(ISQ))(3)] (3), [V(V)(L(ISQ))(L(AP)-H)(2)] (4), [V(V)(L(AP)-H)(2)(L(AP))] (5), and [V(V)O[(L(AP))N(L(AP)-H)]] (6). From variable-temperature magnetic susceptibility measurements and X-band EPR spectroscopy it has been established that they possess the ground states: 1, S = 0; 2, S = 1; 3, S = (3)/(2); 4, S = (1)/(2); 5, S = 0; 6, S = 0. The o-iminobenzosemiquinonato radicals (S(rad) = (1)/(2)) couple strongly intramolecularly antiferromagnetically to singly occupied orbitals of the t(2g) subshell at the respective metal ion but ferromagnetically to each other in 3 containing a Co(III) ion with a filled t(2g)(6) subshell. It is demonstrated that the oxidation level of the ligands and metal ions can be unequivocally determined by high-quality X-ray crystallography in conjunction with EPR, UV-vis, and M?ssbauer spectroscopies. The spectro- and electrochemistry of these complexes have also been studied in detail. Metal- and ligand-based redox chemistry has been observed. The molecular and electronic structures are compared with those of their o-semiquinonato analogues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号