首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The size dependence of the electronic structure of Al clusters containing 3d impurity atoms, Fe, Co and Ni, has been self-consistently calculated within the model of an atom built-in in a spherical jellium cluster and the local-density functional theory. It is found that the electronic structure of Al jellium clusters containing an impurity 3d atom at the center periodically changes with an increase in cluster size.  相似文献   

2.
The experimental data related to the electric field gradient at transition impurities either in hexagonal metals, or in cubic metals where the isotropy is perturbed by a next impurity, can be explained neither by the lattice contribution nor by the electronic contribution from the conduction band. A model is proposed here to investigate the electronic contribution arising from virtual bound 3d states on the impurity, by studying the local crystal field influence in a Friedel-Anderson model. It appears that at the 0°K limit, the localized electronic contribution to the EFG can be linearly related to the density nd(?F) of 3d states at the Fermi level. As a first approximation, this law is valid even at temperature different from 0°K so establishing a linear correlation between the EFG, the impurity resistivity and the amplitude of the charge perturbation around the impurity.  相似文献   

3.
Luminescence spectra of W centers in ZnSe are studied. Radiative d–d transitions are identified by the Tanabe–Sugano diagram of the crystal field theory. It is found that the type of electronic transitions changes with a significant change in spectral characteristics of impurity radiation during the transition fromthe 3d- to 5d-electronic systemof impurity centers in the crystals under study.  相似文献   

4.
A theory is presented for superconductivity in amorphous transition metals. It is shown that in contrast to simple metals for transition metals the changes in the phonon spectrum, in the electronic density of states and in the electronic matrix elements which result from strong lattice disorder can enhance as well as decreaseT c. The numerical results for the superconducting transition temperatureT c of amorphous 4d-and 5d-transition metals agree well with the experimental results.  相似文献   

5.
Electron density for alloys which have close-packed metallic structures is calculated by assigning valence electrons to octahedral and tetrahedral interstices, a method which has been previously used for elemental metals. Some localization of electron density is proposed for β -phases when there is considerable difference in ion core sizes. This method of characterizing electron density in alloys can be used to derive structures with the amount of electron transfer if an assumption is made for the volume fraction occupied by each component of the alloy. In general, the electronic structure of intermetallic phases appears to be dominated by the correspondence of a definite number of valence electrons with the number of interstices in the metallic structure (the Hume-Rothery ea ratios). The model used can also accommodate electron distributions which include both ionic and covalent components of electron density. This is the case for Laves phases and the metallic A-15 compounds. There is a preponderance of intermetallic phases where one component is a d-shell metal. Evidence is presented that in several such alloys there is a change in d-shell configuration of the elemental metal which serves to minimize size differences of the ion cores of the alloy.  相似文献   

6.
A self-consistent approach to calculations of the electronic structure and the magnetic susceptibility of nearly magnetic metals, such as palladium and platinum, has been developed in terms of the generalized s(p)d Hubbard model. The energy band structure has been calculated using the ab initio LDA + U + SO method with the additional inclusion of the interstitial s(p)d exchange interaction and spin-fluctuation renormalizations of the electronic spectra, which appear at finite temperatures. The developed approach makes it possible to quantitatively describe the density of states and unusual temperature dependences of the magnetic susceptibility of the nearly magnetic metals under consideration and to evaluate the basic parameters of the electron-electron interactions. The role of the spin-orbit interaction in the formation of the electronic and magnetic properties is enhanced when going from palladium (4d period) to platinum (5d period). The effects of the temperature redistribution of electrons between the s(p) and d states have been revealed.  相似文献   

7.
Ferromagnetic ordering of silver impurities in the AlN semiconductor is predicted by plane-wave ultrasoft pseudopotential and spin-polarized calculations based on density functional theory (DFT). It was found that an Ag impurity atom led to a ferromagnetic ground state in Ag0.0625Al0.9375N, with a net magnetic moment of 1.95 μB per supercell. The nitrogen neighbors at the basal plane in the AgN4 tetrahedron are found to be the main contributors to the magnetization. This magnetic behavior is different from the ones previously reported on transition metal (TM) based dilute magnetic semiconductor (DMS), where the magnetic moment of the TM atom impurity is higher than those of the anions bonded to it. The calculated electronic structure band reveals that the Ag-doped AlN is p-type ferromagnetic semiconductor with a spin-polarized impurity band in the AlN band gap. In addition, the calculated density of states reveals that the ferromagnetic ground state originates from the strong hybridization between 4d-Ag and 2p-N states. This study shows that 4d transition metals such as silver may also be considered as candidates for ferromagnetic dopants in semiconductors.  相似文献   

8.
The evolution of the electronic structure of CeNi4M (M = Fe, Co, Ni, Cu) intermetallics depending on the type of nickel substitutional impurity is explored. We have calculated band structures of these compounds and considered options of substituting one atom in nickel 3d sublattice in both types of crystallographic positions: 2c and 3g. The analysis of total energy self-consistent calculations has shown that positions of 2c type are more energetically advantageous for single iron and cobalt impurities, whereas a position of 3g type is better for a copper impurity. The Cu substitutional impurity does not change either the nonmagnetic state of ions or the total density at the Fermi level states. Fe and Co impurities, on the contrary, due to their considerable magnetic moments, induce magnetization of 3d states of nickel and cause significant changes in the electronic state density at the Fermi level.  相似文献   

9.
The electronic structure of the DyNi2Mn x rare-earth (RE) intermetallides whose cubic structure is similar to the structure of RT2 compounds is studied. Resonant photoemission and X-ray absorption methods are used in the vicinity of the 2p- and 3p-excitation thresholds of transition elements and the 3p-, 3d-, and 4d-thresholds of RE metals to find the Ni, Mn 3d-, and R 4f-partial densities of the states in the valent band. The use of resonant photoemission allows us to establish features of the interaction between the unfinished 4f-shells of ions of RE metals with ions of the transition 3d-elements in RNi2Mn x compounds. The contributions from atoms of various elements to the structure of the valent band are separated, and the basic regularities of band formation during the introduction of manganese atoms are found.  相似文献   

10.
A volume independent and a volume dependent lattice energy function involving short-range interatomic potentials were able to be fitted to the elastic constants, cohesive energy, lattice parameter and for the latter function to the vacancy formation energy and bcc-fcc lattice stability energy, as well, for fcc metals and bcc alkali metals, but not to the cohesive energy and C' elastic constant of bcc transition metals. The assumption that directional, but partial, covalent bonds exist between nearest-neighbors in the bcc transition elements provides an explanation for the latter results and in addition explains the identical dependence of C' and the bcc-fcc lattice stability upon Nd, where Nd is the average number of d electrons, for the bcc transition metals and alloys. Both the mechanical and thermodynamic stability of the bcc structure for transition metals and all transition metal alloys disappears for 5 ? Nd > 2 and <?1.  相似文献   

11.
The results of calculating the electronic structure of semiconductor compounds AIIBVI: 3d(A = Zn; B = S, Se, Te; 3d = Sc-Cu) at a low content of 3d impurities are discussed. The excess charge of an impurity ion with respect to the charge of the zinc ion is determined for the whole series of 3d impurities. It is found that the excess charge gradually varies from +0.6|e| for the scandium impurity to ?0.2|e| for the copper impurity. Photoionization of an impurity ion is simulated by adding a hole or an electron to the impurity center. The added charge is redistributed between the impurity ion and its nearest neighbors, thus decreasing or increasing the total excess charge of the impurity center by a magnitude of ~ 0.2|e|.  相似文献   

12.
The aim of this study is to analyse the stability of the single in-plane vortex state in two-dimensional magnetic nanodots with a nonmagnetic impurity (single-spin defect) at the centre. Small square and circular dots including up to a few thousand of spins are studied by means of a microscopic theory with nearest-neighbour exchange interactions and dipolar interactions fully taken into account. We calculate the spin-wave frequencies versus the dipolar-to-exchange interaction ratio d to find the values of d for which the assumed state is stable. Transitions to other states and their dependence on d and the vortex size are investigated as well, with two types of transition found: vortex core formation for small d values (strong exchange interactions), and in-plane reorientation of spins for large d values (strong dipolar interactions). Various types of localized spin waves responsible for these transitions are identified.  相似文献   

13.
Evidence is given for a configuration dependent hybridization in the spectroscopy of a strongly hybridized compound like CeRh3. This is achieved by comparing the results of 4f inverse photoemission and Ce 3d core level spectroscopies to the predictions of the single impurity Anderson model (SIAM). This analysis shows that the SIAM is not able to quantitatively describe, within a single set of parameters, the results of both spectroscopies. A considerably better agreement with experiments is instead obtained when changes in the hybridization parameter are allowed in the different final states. This result suggests that the hybridization between f and band states strongly depends on the 4f configuration as theoretically predicted.  相似文献   

14.
Based on density functional calculations within both standard generalized gradient approximation and plus on-site Coulomb interactions approaches, we have investigated the electronic structure and magnetic properties of the first-row element-doped CuCl semiconductors. The electronic correlations in both 2p and 3d orbitals are enhanced by adding the on-site Coulomb repulsion (Hubbard U and Hund exchange J). After a comparative study, we find that, for both standard and beyond approaches, B-doped CuCl is a half-metallic magnet with majority-spin impurity bands touching the Fermi level, C-doped CuCl is a magnetic semiconductor, and N-doped CuCl is a half-metallic magnet with minority-spin impurity bands crossing the Fermi level. Nevertheless, for O-doped CuCl, it transforms from a nonmagnetic semiconductor to a half-metallic magnet with metallic up-spins by considering the correlation effects. The calculation shows that the enhanced electronic correlation not only corrects the error of band-gap, but also influences the magnetic ground state and the distribution of local magnetic moments. The location of impurity bands with different dopants was understood based on the elements' electronegativity and interaction between dopant and host atoms. Strong hybridization between the dopant's 2p states and the filled 3d orbitals of adjacent Cu yields the main contribution to magnetization.  相似文献   

15.
The different impurity levels in crystals are investigated basing on a deformation potential model which is related to the impurity size effect. The donor levels such as Ed(O) and Ed(Se) in lightly doped GaP are found to be equal to 898.55 and 103.00 meV, respectively, in perfect agreement with the experimental results of Vink et al.  相似文献   

16.
The interaction of 3d- and 4d-metals with a WC(0001) surface has been studied theoretically by density-functional theory methods depending on surface termination and adsorbate position. The most stable sites of metal adsorption on the surface have been determined. The binding energy of d-metals with the surface is shown to be higher in the case of carbon terminated surface. This is explained by the predominant ionic-covalent contribution to the chemical bond at the interface, with the bond ionicity being determined by charge transfer from the metals to the electronegative carbon. Analysis of the electronic and structural characteristics has revealed the factors affecting the bonding energetics at the metal-carbide interface depending on the metal d-shell filling with electrons.  相似文献   

17.
A 0.1–0.15-eV displacement of the fundamental absorption edge in the optical absorption spectra of nanocrystalline oxide n-CuO (relative to the position of the fundamental absorption edge in the spectra of CuO single crystals) towards lower energies (red shift) is observed against the background of strong blurring. Nanocrystalline n-Cu2O exhibits a displacement of the fundamental absorption edge towards higher energies (blue shift) by approximately 0.35 eV. The size of crystallites in n-CuO and n-Cu2O ranges from 10 to 90 nm. The blue shift of the fundamental absorption edge of n-Cu2O is typical of classical wide-gap semiconductors and can be explained by size quantization upon a change in the particle size. The anomalous red shift of the fundamental absorption edge of the strongly correlated nanocrystalline oxide n-CuO can be attributed to the highly defective structure of n-CuO, anomalies in the electronic structure of strongly correlated compounds based on 3d metals, and their tendency to electronic phase separation with the formation of metal-like inclusions.  相似文献   

18.
The local changes produced in the electronic structure and their effect on the physical properties of the superconducting and normal phases when zinc and nickel are substituted for copper are examined on the basis of a multiband p-d model. It is shown that strong electronic correlations suppress the S=1 configuration of Ni2+ and cause the superposition of the S=1/2 and S=0 states of nickel. The change in the density of states in p-and n-type systems is studied, and the peculiarity of Zn impurity for p-type systems and Ni impurity for n-type systems is shown. The universal dependence of the T c on the residual resistance in lightly doped superconductors and deviations from it in optimally doped systems are discussed. Fiz. Tverd. Tela (St. Petersburg) 41, 596–600 (April 1999)  相似文献   

19.
A new dimensional effect is investigated. It consists in a change of the microstructure of bulk impurity defects after a decrease in the crystal size. The results of studying the changes in the defect structure in (NaCl, KCl, LiF):Mn2+ and (NaCl, KCl, KBr):Eu2+ by electronic paramagnetic resonance (EPR) are presented. Samples of different sizes and nature are investigated: bulk-doped single crystals of large sizes; bulk-doped crystals of small sizes; powder samples of various degree of dispersity, which are obtained by crushing the samples of large sizes; and samples with direct doping of the surface. The spectra of three types are measured: the spectra of single crystals; the spectra of the powders with the sizes of the particlesd ≥ 1 mm; the spectra of the powders withd ≤ 3 μn (analogous spectra have the surface-doped samples). Considerable change in the EPR spectra as the samples are continuously crushed is due to the change of the paramagnetic center (PC) structure. In the case of bulk-doped single crystals the paramagnetic ion compensator is in the nearest cation coordination sphere. When the deformation caused by the surface region becomes large enough in the vicinity of PC, detachment and removal of the compensator from the impurity ion take place. As a result, the local symmetry of the PC is changed and is revealed in the EPR spectra.  相似文献   

20.
The charge states of ions in nanostructured lithium cobaltite prepared by severe plastic deformation under pressure have been determined using X-ray absorption spectroscopy and photoelectron spectroscopy, as well as calculations of the atomic multiplets with allowance for the charge transfer. It has been found that small deformations (pressures up to 5 GPa and angles of anvil rotation up to 30°) lead to the generation of lithium vacancies in the bulk of the nanostructured material and the formation of the Li2O phase on the surface. The charge compensation occurs at the expense of holes in oxygen 2p states; the electronic configuration of cobalt ions is 3d 6 L, where L is a hole in oxygen 2p states. It has been shown that nanostructured lithium cobaltite belongs to the class of insulators with a negative charge transfer energy. An increase in the degree of deformation of lithium cobaltite (at a pressure up to 8 GPa) leads to the formation of Co2+ ions (with the electronic configuration 3d 7).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号