首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The microwave spectrum of thiane, a heterocyclic analog of cyclohexane, has been studied in the region 26.5–40 GHz. The molecule is a highly asymmetric rotor (κ = 0.050154). From the analysis of both the a-type and c-type transitions, the rotational constants determined are (in MHz): A = 3992.719, B = 3005.812, and C = 1914.683. A study of the Stark effect has yielded the dipole moment components (in Debye units) μa = 1.684 ± 0.009, μc = 0.578 ± 0.002, which give a total dipole moment of μ = 1.781 ± 0.010. Comparison of the spectral data from tetrahydropyran, thiane, and 1,4-thioxane demonstrates the similarity in structure of these three compounds. It is found that a very reasonable set of structural parameters can be found which adequately fits the spectral data of all three molecules.  相似文献   

2.
Measurements of rotational transitions of 1-butyne have been made in the range of ~20–130 GHz. Both a-type transitions up to J = 46 and b-type transitions up to J = 42 have been measured and fitted to a rotational Hamiltonian which includes centrifugal distortion terms. In addition to the five quartic centrifugal distortion constants, three sextic coefficients had to be included to reproduce the observed frequencies to within experimental error. The results of the analysis are sufficient for the prediction of all strong transitions throughout the millimeterwave range. A barrier to internal rotation of the methyl group of 3.260 kcal/mole (1 kcal/mole = 4.18 kJ/mole) has been derived from the first excited torsional state. Analysis of the second-order Stark effect has led to an accurate determination of both μa and μb with μa = 0.763(3) D and μb = 0.170(4) D.  相似文献   

3.
The microwave spectrum of 3-oxabicyclo(3.1.0.)hexane has been studied in the range 26.5–40 GHz (R-band) with a Hewlett Packard Model 8400 spectrometer. Both a and c-type R-branch transitions were used to derive the rotational constants for the ground state and first two excited states of the ring-puckering mode. The data are consistent with a single stable conformation, in agreement with a previous far-infrared study (1) and this is shown to be the boat conformation, as was the case with the similar molecules cyclopentene oxide (2, 3) (6-oxabicyclo(3.1.0.)hexane) and 3,6-dioxabicyclo(3.1.0.)hexane (1, 4). The rotational constants for the ground state are (in MHz) A = 6038.06; B = 4432.47; C = 3303.43 yielding κ = ? 0.174268. The electric dipole moment components of the ground state (in Debye units) are |μa| = 1.36 ± 0.02; |μc| = 1.03 ± 0.02 yielding a total dipole moment μ = 1.71 ± 0.03.  相似文献   

4.
The microwave spectrum of heptafulvene (C8H8) has been investigated in the frequency range from 26 to 40 GHz. The following rotational constants have been obtained from a least-squares fit of the measured transition frequencies: A = 3665.972(66)MHz, B = 2004.3165(59)MHz, and C = 1297.5029(90)MHz. From the corresponding moments of inertia it was concluded that heptafulvene has a planar equilibrium structure. The quantitative measurement of the Stark splittings of three transitions have yielded a dipole moment of 0.477(5) D along the a principal axis. A series of satellite transitions accompanied each rotational transition. The satellites have been assigned to the lowest out-of-plane vibration ν42 (B2) for which a frequency of 70(11) cm?1 has been determined from relative intensity measurements.  相似文献   

5.
The microwave spectrum (41-10 GHz) and the infrared spectrum (4000-50 cm−1) of methyl thiolformate have been obtained and analyzed. The spectra are consistent with a single molecular conformation having a planar array of heavy atoms and with the alkyl group cis to the carbonyl group. The measured rotational constants are: A, 11042.22 MHz; B, 5118.27 MHz; C, 3562.03 MHz (κ = −0.5839). No internal rotation doublets were observed in the microwave spectrum for the ground vibrational state, which implies that the barrier hindering internal rotation of the methyl group is either much larger or much smaller than the corresponding value for methyl formate. If the former is true then a lower limit of 10.5 kJ mol−1 may be placed on the barrier height.The dipole moment of methyl thiolformate was measured using the Stark effect to be 1.58 ± 0.05 Debyes (μA = 1.52 D; μB = 0.43 D) for the vapor, and for dilute solutions in benzene at 295 K the value of 1.6 ± 0.1 D was found from capacitance measurements.SCF computations using minimal basis sets of STO/3G atomic orbitals and extended basis sets of STO/4.31G atomic orbitals have been carried out for methyl thiolformate and methyl formate. Energy differences between rotational isomers and estimates of barrier heights are given together with the calculated dipole moments.  相似文献   

6.
The microwave spectrum of 1-cyano-1,3-cyclopentadiene has been assigned and the rotational constants obtained are (in megahertz): A = 8356, B = 1904.24, and C = 1565.36. The dipole moment components were measured and are (in debye) μa = 4.25, μb < 0.3, μtotal = 4.25.  相似文献   

7.
The microwave spectra of three isotopic species of amino acetonitrile (NH2CH2CN, NHDCH2CN, and ND2CH2CN) have been investigated to learn something about the structure and bonding in this and similar compounds. The only rotamer observed is the form in which both NH bonds are gauche to the CN group and the structure is quite rigid. From the available data only the bond angles are well determined. The amino NCC angle is 114.5(3)°, the HCH angle is 103(2)°, the HNC angle is 109.6(4)°, and the HNH angle is 107(1)°. The dipole moment components are μa = 2.577(7) D and μb = 0.5754(10) D; these agree quite well in magnitude and direction with the sum of the acetonitrile and methyl amine dipoles. The rigidity of the molecule and its preference for the form in which the amino protons are closest to the triple bond confirms a suggestion based on earlier studies on similar molecules that there is a strong hydrogen bonding interaction between the amino group and the nitrile group, although in this molecule dipole-dipole forces also probably play a significant role in determining the structure and its rigidity.  相似文献   

8.
The microwave spectrum of divinyl ether has been observed and a, b, and c type rotational transitions of one conformer assigned. This conformer has rotational constants closely related to the cis-trans planar form. The inertial defect and dipole moment reveal that it is not planar. This nonplanarity almost certainly results because of strong repulsion between the β hydrogen of the cis vinyl group and the α hydrogen of the trans vinyl group. The c type transitions are split 53 MHz by inversion tunneling. The dipole moment has been obtained from Stark effect measurements and is 0.782 debye.  相似文献   

9.
The microwave spectrum of propiolyl fluoride has been observed in the frequency region 12.5–40 GHz. Rotational transitions have been assigned for the ground and two excited vibrational states of the normal isotopic species and for the ground vibrational state of the deuterated species. In each case, values for the rotational constants and centrifugal distortion constants have been obtained. The molecule has been shown to be planar and structural calculations suggest no anomalies in any of the internuclear parameters. Stark effect measurements have yielded a value of 2.98 ± 0.02 Debyes for the dipole moment.  相似文献   

10.
The rotational spectrum of 3-methylcyclopentanone has been observed in the frequency region from 18.0 to 26.5 GHz. Both a-type and b-type transitions in the ground vibrational state and a-type transitions in five excited states have been assigned. The ground state rotational constants are determined to be A = 5423.32 ± 0.18, B = 1949.51 ± 0.01, and C = 1529.59 ± 0.01 MHz. Analysis of the measured quadratic Stark effects gives the dipole moment components ∥μa∥ = 2.97 ± 0.02, ∥μb∥ = 1.00 ± 0.03, ∥μc∥ = 0.18 ± 0.06, and the total dipole moment ∥μt∥ = 3.14 ± 0.03 D. These data are consistent with a twisted-ring conformation with a methyl group in the equatorial position.  相似文献   

11.
The microwave spectra of 4-thiacyclohexanone in the ground state and eight vibrationally excited states have been studied in the frequency region 18.0–40.0 GHz and the corresponding rotational constants have been determined. The following values of the ground-state rotational constants (MHz) were obtained from the analysis of the a-type transitions: A = 3935.149 (0.031), B = 1829.444 (0.001), and C = 1364.609 (0.001). Analysis of the Stark effect gives for the dipole components (in Debye units) μa = 1.409 (0.002), μc = 0.391 (0.064). These data are consistent with a chair conformation for the ring. A phisically reasonable set of structural parameters which reproduce the ground-state rotational constants has been derived. A qualitative estimate of the low-frequency vibrational modes was obtained from relative-intensity measurements. The lowest vibrational frequency is believed to be a ring-bending mode and it occurs at 77 ± 22 cm?1 while the ring-twisting mode is at 204 ± 27 cm?1.  相似文献   

12.
The microwave spectrum of 1,2-dimethylenecyclobutane has been studied in the range 26.5–40 GHz using a Hewlett-Packard 8400C Stark-modulated spectrometer. The rigid rotor constants have been derived for the ground state (in MHz: A = 4925.22, B = 4089.88, C = 2301.67) and four excited states of the ring-puckering vibration. That the ring skeleton is planar is indicated by the smooth variation of the rotational constants with vibrational state and by the value of 1/2(Ia + Ib ? Ic) which is consistent with only 4 hydrogen atoms out of the plane of the remaining atoms.Analysis of the Stark effect yields a dipole moment lying along the b-axis; μb = 0.457 ± 0.002D. A physically reasonable set of structural parameters which reproduce the ground state rotational constants has been derived by adjustment of the carbon skeleton parameters by a diagnostic least-squares procedure.  相似文献   

13.
The microwave spectrum of cis-1,2,3-triflurocyclopropane has been investigated in the region 8–40 GHz. A fit of the oblate symmetric top spectrum gives a rotational constant of 4064.925 ± 0.022 MHz. A molecular structure was determined using the rotational constants obtained from assignments of the monodeutero species and the carbon-13 species. The molecular parameters are r(CH) = 1.095 ± 0.002 A?, r(CC) = 1.507 ± 0.001 A?, r(CF) = 1.354 ± 0.001 A? and ∠(HCF) = 112.3 ± 0.2°. The dipole moment was determined to be 3.89 ± 0.02 D. The structural parameters are compared to other substituted cyclopropyl ring structures and to molecular orbital predictions as well as to related fluorocarbons. The molecule provides another example of the effect of fluorine substitutions on shortening adjacent bonds. It is also found that nonbonded F?F distances tend to be constant.  相似文献   

14.
Measurements of the microwave spectrum of CF2 have been extended to include transitions up to J = 40. Using these extended measurements, a centrifugal distortion analysis has been performed and from the distortion constants, the force field, infrared spectrum, average structure, Coriolis coupling constants, and inertial defect have been calculated. The original assignment of the infrared spectrum has been confirmed. An improved value for the dipole moment, 0.469 ± 0.026 D, has been obtained.  相似文献   

15.
The microwave spectrum of tetrahydropyran-4-one has been studied in the frequency region 18 to 40 GHz. The rotational constants for the ground state and nine vibrationally excited states have been derived by fitting a-type R-branch transitions. The rotational constants for the ground state are (in MHz) A = 4566.882 ± 0.033, B = 2538.316 ± 0.003, C = 1805.878 ± 0.004. From information obtained from the gas-phase far-infrared spectrum and relative intensity measurements, these excited states are estimated to be ~ 100 cm?1 above the ground state for the first excited state of the ring-bending and ~ 185 cm?1 for the first excited state of the ring-twisting mode. Stark displacement measurements were made for several transitions and the dipole moment components determined by least-squares fitting of the displacements: (in Debye) |μa| = 1.693 (0.001), |μb| = 0.0, |μc| = 0.300 (0.013) yielding a total dipole moment μtot = 1.720 (0.003). A model calculation to reproduce the rotational parameters indicates that the data are consistent with the chair conformation.  相似文献   

16.
17.
The microwave spectrum of 3,6-dioxabicyclo[3.1.0.]hexane has been obtained. The rotational lines of one ring conformation only have been observed and assigned. Ground state rotational constants are A0 = 6287.302 ± 0.011 MHa, B0 = 4683.546 ± 0.008 MHz, and C0 = 3358.517 ± 0.089 MHz. The diploe moment components obtained from Stark effect measurements are μa = 0.276 ± 0.010 D and μc = 2.47 ± 0.04 giving μ = 2.485 ±0.040 for the dipole moment of the molecule. The rotational constants and dipole moment components obtained experimentally can be satisfactorily explained only if the boat form is the most stable ring conformation.  相似文献   

18.
The rotational spectrum of peroxynitric acid has been investigated in the 40- to 120-GHz region. The spectrum of the ground state is complicated by tunneling of the OH group, which causes a doubling of the asymmetric rotor spectrum. The magnitude of the tunneling splitting is such that it causes Coriolis interactions between the energy levels of the two tunneling states which lead to perturbations in the rotational spectrum. A combined analysis of the a- and b-type pure rotational transitions with the c-type tunneling transitions allows a perturbation-free determination of the rotational constants for the ground state. A similar analysis of the low-lying NO2 torsional vibration at 145(6) cm−1 has also been carried out. The dipole moments for each state have been determined by analysis of the second-order Stark effect. The molecular structure analysis indicates that all the heavy atoms are planar and only the hydrogen atom is out of the heavy atom plane. The preferred orientation of the hydrogen atom with respect to the plane of the heavy atoms is at an angle ∼106° with respect to the cis conformation.  相似文献   

19.
Nine microwave ground-state spectra of seven isotopes of ortho-xylene have been measured between 9 and 29 GHz. From the rotational constants a partial substitution structure could be calculated. The dipole moment was determined from Stark-lobe shifts, μa = 0.640 ± 0.005 D. The high-J transitions were found split into multiplets due to the interaction of methyl top internal rotation with the overall molecular rotation; doublets through quintets with the correct nuclear spin weight dependence could be observed according to group-theoretical expectations. A weighted average, V3 = 1490 ± 50 cal/mole, was derived for the internal rotation barrier neglecting top-top coupling and presumably small, higher than threefold barrier terms. The methyl groups both stagger the bond between the two benzene carbon atoms which carry them.  相似文献   

20.
The microwave spectrum of bicyclo[2.1.1]hexan-5-one has been analyzed, resulting in a total dipole moment of 3.18 ± 0.02 D with an orientation of 1.7 ± 1.7° with respect to the carbonyl bond axis. This dipole moment is about 0.3 D larger than that of most other carbonyl compounds, but it is reasonably comparable to the even higher values which have been reported for bicyclo[2.1.1]hexan-2-one (3.35 ± 0.02 D) and for cyclopentanone (3.25 ± 0.02 D). The rotational constants for the ground vibrational state are A = 4448.347 ± 0.011, B = 2693.349 ± 0.008, and C = 2673.300 ± 0.006, the uncertainties being standard deviations determined from a least-squares fit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号