首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The F-centre in several alkali halides has been investigated by means of the multiple scattering Xα method. The calculated values of the first absorption peak and the hyperfine splitting constant are compared to experimental results and other theoretical work. It is found that the results agree quite well with experimental values.  相似文献   

2.
U 2-centers in alkali halides are neutral hydrogen atoms in interstitial lattice sites, as has been shown by EPR measurements. The hyperfine interactions with the proton and with the four nearest halogen nuclei are resolved in the EPR spectrum. In order to resolve hyperfine interactions with further nuclei of the surrounding lattice ENDOR measurements have been performed onU 2-centers in KCl at 77 °K. The analysis of the ENDOR spectra gave precise values for the hyperfine and quadrupole interaction constants of the nearest neighbour chlorine and potassium nuclei. The isotropic hyperfine constant of the chlorine neighbours is 24 times larger than that of the potassium neighbours although both nuclei are on equivalent first shell lattice positions. The hyperfine interactions of second shell potassium nuclei [(1/2, 1/2, 3/2)-position] show an unexpectedly large isotropic hyperfine constant. One expects a pure magnetic dipole-dipole interaction for the outer shell nuclei because of the concentrated hydrogen wave function. Two further chlorine shells could be approximately analysed. A theoretical estimate of the hyperfine and quadrupole interaction constants was made by orthogonalizing the 1s hydrogen wave function to the cores of the surrounding ions. If one takes into account the mutual overlap of neighbouring potassium and chlorine ions, one gets the right order of magnitude of the measured constants and a value of 10.4∶1 for the ratio of the isotropic hyperfine constants of the first shell chlorine and potassium nuclei. The relatively large isotropic constant of the second shell potassium nuclei can also be explained on this basis.  相似文献   

3.
Spectral studies of Co substituted Ni-Zn ferrites   总被引:1,自引:0,他引:1  
The spinel ferrites Zn0.35Ni0.65−xCoxFe2O4, 0≤x≤1, have been prepared using the standard ceramic technique. Room temperature Mössbauer, X-ray and infrared IR spectra were used for carrying out this study. X-ray patterns reveal that all the samples have single-phase cubic spinel structure. The Mössbauer spectra of the samples show a paramagnetic phase for x=0 and a six-line magnetic pattern and a central paramagnetic phase for x≥0.1. They are analyzed and attributed to two magnetic subpatterns and two quadrupole doublets due to Fe3+ ions at the tetrahedral A-sites and octahedral B-sites. Four absorption bands are observed in IR spectra. They confirm the spinel structure of the samples and existence of Fe3+ ions in the sample sublattices. The deduced hyperfine interactions, lattice parameters, absorption band positions and intensities and force constant are found to be dependent on the substitution factor x, where the cation distribution is estimated. The hyperfine magnetic fields, magnetization and lattice resonant frequency are found to be dependent on the interionic distance.  相似文献   

4.
The hyperfine structure of dilute 166Er impurities in Au has been investigated between 1.8 and 60 K by Mössbauer spectroscopy. The hyperfine spectrum of the Γ7 electronic ground state is clearly observed below 4.2 K while at higher temperatures there is an indication of the contribution from the excited CEF-states Γ(1)8 and Γ6. Using Hirst's relaxation theory for the Γ7 ground state the magnetic hyperfine coupling constant A=(247±3) MHz and the exchange coupling constant Jsf=(0.10±0.02)eV were derived. A quadruple coupling constant B of about 1 MHz was estimated from the hyperfine pattern of the Γ(1)8 quartet.  相似文献   

5.
The absorption by the R (0) and R (1) lines of the fundamental band of HI broadened by He have been measured in the 0-500 mbar pressure range using a tunable difference frequency generation laser spectrometer. The observed transmissions have been fitted and analyzed with a line-coupling model based on the infinite order sudden approximation. It is demonstrated that the three hyperfine components of the R (0) manifold have identical widths and are not coupled by collisions. On the contrary, the profile of the R (1) manifold cannot be modeled without accounting for both line-mixing and for the fact that the nine hyperfine components have different broadening parameters. This is, to our knowledge, the first demonstration of line coupling within hyperfine components.  相似文献   

6.
The Doppler-free two-photon absorption method performed with a narrowbandc w dye laser permitted high resolution measurements of transitions from the Ba I ground state 6s 2 1 S 0 to several highly excited states. The lifetimes and hyperfine splittings of these states as well as the isotope shifts of the transitions have been determined accurately. The lifetime values are in agreement with transition probability data; the hyperfine splitting results show considerable configuration interaction effects. A detailed discussion of the isotope shifts is given.  相似文献   

7.
Room temperature magnetic resonance measurements have been made on additively colored RbCl and RbBr and on X-irradiated RbH at pressures up to 8 kbar. In RbCl and RbH pressure shifts of the F-center isotropic coupling constant a1 were obtained from changes in the resolved EPR hyperfine structure. Pressure shifts of first and second shell hyperfine coupling constants of F-centers in RbBr were found from high pressure ENDOR spectra. Effects of the pressure induced polymorphic phase transformations in RbCl and RbBr are discussed. No evidence was found for a structure transformation in RbH. Room pressure ENDOR measurements on additively colored RbI were made at 77°K. The first and second shell hyperfine coupling constants are reported. All results accord well with the behavior of F-centers in other alkali halides.  相似文献   

8.
The optical absorption and ESR spectra of Bi12GeO20 and B12SiO20 doped with Mn have been measured before and after illumination with visible light. Uniaxial stress measurements on a sharp line observed at 8026 cm?1 were performed. The observed ESR spectrum is a superposition of six lines resulting from the hyperfine interaction of manganese ions in tetrahedral positions. The g-factor and hyperfine constant are g = 1.999 ± 0.003 and A = 78 Gs. Analysis of the light-induced absorption spectrum leads to the conclusion that a small hole polaron bound to an Mn impurity at a tetrahedral site is responsible for the very broad absorption band which appears after illumination. The sharp line is interpreted as due to a transition inside the Mn+ center in tetrahedral coordination. Bands in the region 10,000–16,000 cm?1 are due to Mn3+ centers in interstitial positions, whose symmetry can be treated to a first approximation as tetragonal. The following crystal field parameters for this center were found: B = 565 cm?1, Dq = 1400 cm?1, Dt = ?330 cm?1, Ds = 4170 cm?1 and C = 2260 cm?1. The illumination conditions which are needed for homogeneous coloration of the sample are also discussed.  相似文献   

9.
A saturated absorption technique using an actively stabilized C.W. dye laser has been used to study the hyperfine structure of some lines lying in the 9-3, 10-3, 11-3, 11-4, 12-3 bands of the B-X system of molecular iodine. The comparison of the different spectra shows that the intensities of the different hyperfine components of one line deviate from the 2F + 1 proportionality when 'v decreases towards the value 'v=6 where the potential curves of the 3Π+0 and 1u states are crossing. The preliminary experimental results concerning the hyperfine component intensity variations versus the quantum numbers 'v, J and F give a direct qualitative support to the recently reported hyperfine predissociation in I2.  相似文献   

10.
Doppler-reduced saturation absorption spectroscopy is applied to study the hyperfine structure of excited levels of Lanthanum. 16 transitions in the near infrared wavelength range are investigated. Precise values for the magnetic dipole hyperfine structure constants A as well as for the electric quadrupole hyperfine structure constants B of the isotope 139La are determined for 14 levels of odd parity and nine levels of even parity. For levels of even parity a good agreement is found with values from previous measurements using sub-Doppler methods. For levels of odd parity previously determined values are improved and for two levels new values of the hyperfine structure constants are reported.  相似文献   

11.
The Landé factor gJ of the (6s2 6p 7s)( 3P1 level of the even isotopes of lead has been measured by Fabry-Pérot interferometry. The result is: gJ=1.3500(4). The agreement with the previously measured hyperfine splitting of this level for the isotope 207Pb and with the level crossing results is good when small corrections (nuclear Zeeman interaction, second-order hyperfine and Zeeman corrections) are taken into account. The corrected hyperfine dipole coupling constant for this level of 207Pb is: A=293.60(13) mK.  相似文献   

12.
The temperature dependent nuclear hyperfine interaction of 111Cd-carbon complex in germanium has been studied using the perturbed γγ angular correlation (PAC) method. The parameters of the hyperfine interaction representing substitutional carbon–cadmium complex in germanium (ν Q1=207(1) MHz (η=0.16)) shows dependence on temperature. The formation and thermal stability of the complex has been reported by the same author earlier. It was found in this study that the quadrupole coupling constant of the interaction increases at sample temperature below 293 K. The results are encouraging toward better understanding of the complex in the host matrix.  相似文献   

13.
A modification of the atomic beam magnetic resonance method for investigation of the hyperfine structure of excited atomic states will be described. Radiofrequency transitions between the hyperfine structure niveaus of the excited state, which are unequally populated by circularly polarized light, are detected by observing the resulting change in population number of the hyperfine structure niveaus of the ground state using magnetic deflection in an inhomogeneous field and additional radiofrequency transitions in the ground state as analyzers. As an application the hyperfine structure of the excited 42 P 3/2-state of K39 has been investigated in an almost strong magnetic field of about 65 G with a constant frequency of the applied radiofrequency field of 125.50 Mc/s. The analysis of the radiofrequency signal of the excited state detected as a change in the amplitude of a radiofrequency transition in the ground state yielded the valuesA=(6.10±0.25) Mc/s andB=(1.8±1.2) Mc/s for the hyperfine structure constants of the 42 P 3/2-state of K39. Further possibilities for observing signals of the excited state with the apparatus used in this experiment are also discussed.  相似文献   

14.
The submillimeter-wave spectrum of FCO has been measured using a backward-wave oscillator based spectrometer in conjunction with a free space absorption cell. The FCO radical has been produced in glow discharge plasma of a gaseous mixture of F2CO, Ar, and He. A total of 109 a-type, R-branch lines have been measured in the 355-638 GHz region and have been analyzed together with the low-J transitions observed by means of Fourier Transform microwave spectroscopy [H. Habara, S. Yamamoto, J. Mol. Spectrosc. 207 (2001) 238]. Twenty-one molecular constants have been determined accurately including the fine and hyperfine interaction constants. Comparison of the hyperfine constants with ab initio values and matrix electron spin resonance data has been made.  相似文献   

15.
The MSXα cluster technique has been used to study the electronic structure of hematite α-Fe2O3, where iron is formally in a 3d56S state. The calculated energy levels are compared with X-ray emission and photoelectron spectra. The wave functions have been used to compute the charge distribution, as well as hyperfine parameters such as quadrupole coupling constant, isomer shift and magnetic hyperfine field. The results indicate a considerable influence of chemical bonding on these parameters due to charge transfer and covalency. From the calculated field gradient and the measured quadrupole coupling constant a nuclear quadrupole moment for 57mTe of about 0.11b is deduced. This value is smaller than the most recent estimates of 0.15b based on the ionic model but not as small as the value of 0.082b obtained from first principles calculations on iron dihalides.  相似文献   

16.
The hyperfine interactions of 119Sn impurity atoms in samarium at temperatures from 5 to 70 K are investigated by Mössbauer spectroscopy. The distributions P of magnetic hyperfine fields B hf for tin atoms at sites of the hexagonal [P h(B hf)] and cubic [P c(B hf)] samarium sublattices are determined from the experimental absorption spectra. Ion ordering in pairs of magnetic centers located in layers of the cubic sublattice is observed by Mössbauer spectroscopy for the first time. Each magnetic center involves ordered ions at the nearest neighbor sites of the tin atom replacing the samarium ion at the hexagonal lattice site. The quadrupole coupling constant e 2 q hQ=0.59±0.12 mm/s is determined for tin atoms at the hexagonal sublattice sites of samarium. The quadrupole interaction of tin atoms in heavy rare-earth metals (from Tb to Er) with a hexagonal close-packed structure is discussed.  相似文献   

17.
Optical absorption, Electron Paramagnetic Resonance (EPR) studies are carried out on lead zinc phosphate glass systems doped with Cr3+ and VO2+. From optical absorption investigations the crystal-field parameters Dq, B and C are evaluated. EPR measurements on Cr3+ systems indicate that Cr3+ ions are located at sites with low symmetry. EPR spectra of vanadyl doped system revealed the characteristic nature of vanadyl ion. Spin-Hamiltonian and hyperfine values are evaluated for both the systems. Optical absorption spectra of vanadyl doped system revealed three bands that are characteristic of VO(II) ion in tetragonally distorted octahedral site. By correlating both EPR and optical data, the dipolar coupling constant (P) and Fermi-constant coupling parameter (κ) and molecular orbital coefficients β?2, eπ?2 are evaluated. Electron Paramagnetic Resonance and optical absorption studies showed that the chemical bonds of Cr3+ ions and VO2+ ions with the ligands have more covalent nature. From these studies it is also observed that lead spinals are playing major key role in sustaining the covalent nature of bonding.  相似文献   

18.
Mössbauer absorption spectra habe been obtained as a function of temperature for Cr1?xFex alloys with x=0.15, 0.18, 0.20, 0.22, 0.25 and 0.30. For the specimens near the critical composition of ferro-antiferromagnetic transition (about 18 at % Fe), abrupt increase of the average hyperfine field was found at the temperature Tf which is far below the ferromagnetic Curie temperature. The observed hyperfine field distribution P(H) consists of two peaks centered around zero and finite hyperfine field (low field peak and high field peak), indicating the coexistence of paramagnetic-like and ferromagnetic moments. Below Tf, the intensity fraction and the maximum position of the high field peak curve increase more rapidly than in the ferromagnetic temperature range, while its halfwidth decreases suddenly. These facts are interpreted as due to the freezing of spins by reentering into the spin-glass phase.  相似文献   

19.
Far-infrared LMR spectra of NF in its a1Δ state have been detected and assigned. Lines in two rotational transitions of both v = 0 and v = 1 states were measured for analysis. The derived constants are in excellent agreement with earlier EPR work (hyperfine parameters, v = 0) and with diode laser spectroscopy (rotational constants for v = 0 and 1). Using the optimized parameters it is shown that there is a significant decrease in the fluorine hyperfine constant on vibrational excitation. One rotational transition from v = 2 NF 1Δ has also been assigned.  相似文献   

20.
The pure rotational spectra of CH2DI and CHD2I have been measured by microwave Fourier transform spectroscopy, millimeterwave spectroscopy and submillimeterwave spectroscopy. The quadrupole hyperfine structure due to iodine has been analyzed by direct diagonalization of the quadrupole tensor. For the J = 1-0 transition of the ground state of CH2DI, the quadrupole hyperfine structure due to deuterium could be resolved and the quadrupole coupling constant eQqaa(D) determined.Accurate rotational and centrifugal distortion constants (up to sextic terms) have been determined. They are compared to the constants derived from the ground state combination differences (GSCD). A good agreement is observed but it is also found that the two kinds of data (GSCD and microwave) are complementary and a combined fit allows us to significantly improve the accuracy of the constants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号