首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
利用Li+/MgO催化剂上乙烷氧化脱氢制乙烯及IR、TPD等测试手段对外[Li+O-]中心的形成机理及其性质进行了研究,表明[Li+O-]中心最初生成与MgO表面的自由羟基相关,气相氧、反应温度配位数等对生成[Li+O-]有一定程度的影响.  相似文献   

2.
用LiNO3、Mn(Ac)2•4H2O和柠檬酸的混合溶液填充聚甲基丙烯酸甲酯胶体晶体模板, 在空气中氧化焙烧, 制备出三维有序大孔尖晶石型锂锰氧化物Li1.6Mn1.6O4. 前驱体经过0.1 mol/L盐酸脱锂后获得相应的三维有序大孔锂离子筛, 其大孔直径和孔壁厚度分别为240 nm和50 nm左右. XRD测试结果表明, Li1.6Mn1.6O4、锂离子筛和吸锂后的样品均保持尖晶石结构. 三维有序大孔材料呈现彼此连通的孔道空间, 缩短了Li+的平衡吸附时间, 前驱体脱锂率在80 ℃时达到95%, 而锰的溶损率在低于60 ℃时小于2.5%. 溶液温度对Li+的交换能力影响很大, 升高温度, Li+与H+的可逆交换程度增大, Li+的最大吸附容量为56.7 mg/g, 但处于锰16d八面体缺陷位置的氢难于被交换. pH滴定和分配系数(Kd)分析表明, 该固体酸在Li+, Na+和K+共存溶液中对Li+的吸附具有较高的选择性.  相似文献   

3.
采用密度泛函理论对Li以不同覆盖度吸附在石墨烯表面上时系统的结构稳定性和场发射性能进行了计算.计算结果表明:Li吸附在石墨烯表面的碳六元环的中心位置时系统的能量最低,随着Li的覆盖度增加,碱金属与石墨烯之间的吸附作用逐渐减弱.在(4×4)R0°结构中,由于碱金属Li的修饰作用,Li/石墨烯体系的功函由原来的4.625eV降至3.156eV,但是随Li的覆盖度增大,系统的功函反而上升.电荷分布和态密度结果表明:随Li覆盖度增大,碱金属Li—Li之间的排斥作用逐渐增强,这不仅导致金属向石墨烯转移电子数逐渐减少,同时还使得Li层的功函较纯Li金属表面功函明显增加,这是Li/石墨烯的功函不会因Li覆盖度增加而单调递减的原因.  相似文献   

4.
偏钛酸型锂离子交换剂表面性质与选择吸附性研究   总被引:11,自引:0,他引:11  
本文采用Li渗入于TiO2经高温热力学重结晶制备偏钛酸型锂离子交换剂,其对碱金属、碱土金属溶液中的Li+ 具有特殊选择吸附性,其次序为Li+>Mg2+>Ca2+>Na+,K+。对交换剂表面性质以及Li+ 在固-液界面的选择吸附特性进行了研究。通过对某气田卤水提锂实验表明:该交换剂对低Li+ 含量卤水中Li+ 的选择性吸附效果显著,对Mg2+、Ca2+、Na+、K+ 的分离效果好,Li+ 的富集倍数达9倍,并具有较好的循环稳定性。  相似文献   

5.
采用柠檬酸配合法合成了系列尖晶石富锂锂锰氧化物Li2O.nMnO2(n=1.75,2.0,2.25,2.5,3.0)。通过X射线衍射(XRD)和酸浸实验发现,350℃合成的Li2O.2.25MnO2具有纯相尖晶石锂锰氧化物结构,且在弱酸性介质中具有较高的锂溶出率和较低的锰溶损率。Li2O.2.25MnO2在酸浸之后转型为锂离子筛。XRD和扫描电子显微镜(SEM)分析发现锂离子筛能够保持尖晶石锂锰氧化物的结构和形貌。吸附实验表明,该锂离子筛在碱性含锂溶液中对Li+具有吸附性能,且吸附容量随着溶液温度和pH值的升高而增大,最高能达到40.14 mg.g-1。通过傅立叶红外光谱(FTIR)研究了锂离子筛的吸附机理,并用Langmuir模型描述了其在LiCl+LiOH溶液中的吸附行为。  相似文献   

6.
用MnO_2离子筛吸附剂从溶液中提取锂(英文)   总被引:1,自引:0,他引:1  
研究了MnO2离子筛的制备、表征及其提锂性能。通过控制低温水热合成反应条件制备了4种不同晶相的一维纳米MnO2,进一步用浸渍法制备了Li-Mn-O三元氧化物前驱体,并经酸处理后得到对Li+具有特殊选择性的离子筛。用XRD、吸附等温线、吸附动力学及pH滴定等手段对产物的晶相结构和Li+吸附性能进行了研究。结果表明,SMO-b和SMO-d离子筛的Li+平衡吸附量符合Freundlich吸附等温方程。反应物浓度对MnO2不同晶面的生长速率有不同的影响,但(NH4)2SO4对吸附容量并无提高。吸附速率方程符合一级动力学Lagergren方程。MnO2离子筛Li+的吸附量远远高于Na+。  相似文献   

7.
 采用CO加氢反应、程序升温还原(TPR)、CO吸附和CO脱附等技术,研究了Fe助剂对Rh-Mn-Li/SiO2催化剂上CO加氢合成二碳含氧化物反应的影响.结果表明,Mn,Li和Fe的加入明显提高了Rh催化剂的活性及选择性,特别是在1%Rh-1%Mn-0.075%Li/SiO2催化剂中加入0.05%Fe后,C2+含氧化物的时空收率由331.6g/(kg·h)提高到457.5g/(kg·h).但当Fe的加入量继续增加时,催化剂的活性及选择性下降,甲醇的选择性上升.TPR实验表明,当加入少量Fe(0.05%~0.5%)时,TPR的峰面积随Fe加入量的增大而增大,Fe的加入使Rh的还原温度向高温移动,Mn的还原温度向低温移动,Fe的还原峰与Rh和Mn的还原峰相重叠,由此推断这些Fe与Rh是处于紧密接触状态的.当Fe含量增加到1%时,样品在522K出现一个新的谱峰,该峰可归属为与Rh非紧密接触的Fe的还原峰.CO的吸附实验表明,当Fe的加入量超过一定值后,CO吸附量下降.CO的脱附实验表明,在Rh基催化剂中加入少量Fe后,强吸附的CO增多,但当Fe的加入量超过一定值时,强吸附的CO量下降.  相似文献   

8.
本实验室前期所制备的Li4Mn5O12超细粉末在卤水体系中对Li+具有较大的吸附容量和良好的选择性。但由于超细粉体的流动性和渗透性差,无法直接应用于固定床,需对粉末吸附材料进行成型造粒,以便于实际应用。本论文采用聚氯乙烯为粘结剂,制备出粒径约为2.0~3.5 mm的球形PVC-Li4Mn5O12,经盐酸处理后得到球形PVC-MnO2离子筛。并通过扫描电镜(SEM)、X射线衍射仪(XRD)、静态和动态连续锂吸附实验研究了球形离子筛形貌和锂离子吸附性能。结果表明,球形离子筛对Li+的吸附容量高达5.28 mmol.g-1,在混合溶液中对Li+具有良好的选择性,这对于在盐湖卤水或海水提锂具有重要的实用意义。  相似文献   

9.
采用基于赝势平面波基组的密度泛函理论, 对不同Li原子覆盖度下Li/Si(001)体系的吸附构型、电子结构以及吸附Li原子对表面性质的影响进行了系统研究. 计算结果表明, 在所考察的覆盖度范围内, Li原子倾向于吸附在相邻两个Si-Si二聚体之间各种对称性较高的空穴位, 其中覆盖度为0.75 ML(monolayer)时具有最小的平均吸附能. 由能带结构分析结果可知, 随着覆盖度的增大, Si(001)表面存在由半导体→导体→半导体的变化过程. 在覆盖度为1.00 ML时, 由于表层二聚体均受到显著破坏, 使得体系带隙明显增大. 吸附后, 有较多电子从Li原子转移到底物, 导致Si(001)表面功函显著下降, 并随着覆盖度的增加表面功函呈现振荡变化. 此外, 从热力学稳定性角度上看, 覆盖度为0.75 ML的Li/Si(001)表面较难形成.  相似文献   

10.
用溶胶-凝胶法合成出尖晶石结构的LiNi0.05Mn1.95O4,用0.5 mol·L-1过硫酸铵对其进行改型,制得锂离子筛LiNiMn-H.LiNiMn-H对Li+的饱和交换容量达5.2 mmol·g-1.用缩核模型(Shrinking-Core Model)处理该离子交换的反应动力学数据得到LiNiMn-H吸附Li+时离子交换反应的控制步骤是颗粒扩散控制(PDC),同时得到了该实验条件下锂离子筛LiNiMn-H吸附Li+的动力学方程和颗粒扩散系数De.  相似文献   

11.
以MnSO4,KMnO4及LiOH为原料,经水热处理后得到LiMnO2,再由固相焙烧得到尖晶石相Li1.6Mn1.6O4,酸洗处理后得到锂离子筛。研究了水热温度,氧气和MnO4-/Mn2+的物质的量之比(nMnO4∶nMn^2+)对所得LiMnO2的组成及相应前驱体Li1.6Mn1.6O4酸处理中Mn溶损率的影响。开路电势测量及化学分析表明,氧气会参与反应。若按照理论氧化剂用量nMonO4∶nMn^2+=1∶4进行水热反应会导致杂质Li2MnO3和LiMn2O4的生成。若控制水热温度为160℃,nMnO4∶nMn^2+=1∶6时可得到纯相正交LiMnO2(o-LiMnO2)。所得离子筛在高镁锂比盐湖卤水中Li+吸附容量可达42.87 mg·g^-1,且对Li+具有优异的选择吸附性并遵循化学吸附过程。经过5个循环后吸附容量保持在37.21 mg·g^-1,锰溶损率降至0.34%。  相似文献   

12.
胍上有三个具有给电子能力的氮原子,胍基负离子[(RN)2C(NR2)]-具有多种共振结构,可以多种方式与金属配位;同时它的空间位阻和电荷效应可以很容易通过氮原子上的取代基进行调控。近年来胍基作为辅助配体在主族和过渡金属配合物的合成中的应用引起了人们的广泛关注,而且发现一些胍基金属配合物显示出了不同于茂基金属配合物的独特的反应性质。但是有关胍基钛配合物的合成与反应性能方面的文献报道还很少。本文报道两个胍基钛的配合物的合成,并对它们的催化聚合活性作了初步研究。  相似文献   

13.
通过析因实验设计优化了掺杂MnO2土壤对雌酮(E1)、雌二醇(E2)、17α-乙炔基雌二醇(EE2)、雌三醇(E3)和双酚A(BPA)等多种雌激素化合物的吸附条件,采用Langmuir吸附等温式和Gibbs方程考察了掺杂MnO2土壤吸附雌激素化合物的热力学规律和吸附过程的热力学性质,并利用傅里叶变换红外光谱对吸附机理进行了探讨,同时利用液相色谱-质谱联用技术对土壤中多种雌激素化合物的主要降解产物进行了定性分析.结果表明,雌激素化合物浓度和MnO2掺杂比例对雌激素化合物在掺杂MnO2土壤中的吸附量起显著的正效应,土壤质量对雌激素的吸附起负效应,土壤-水吸附体系的pH值对E2的吸附量起正效应而对E3起负效应.Langmuir吸附等温式能够描述雌激素在掺杂MnO2土壤中的热力学吸附行为(R2>0.99),吸附过程中雌激素化合物的ΔG均为负值,绝对值均小于40 kJ/mol,说明土壤吸附雌激素化合物为自发的物理吸附过程;掺杂MnO2土壤对雌激素的吸附既存在物理吸附作用,也存在化学降解作用.雌激素化合物的降解主要由于土壤中的有机碳增强了MnO2的导电性能,说明MnO2可以作为土壤固定化剂,能够有效地防止雌激素化合物因解吸作用而形成的"二次污染".  相似文献   

14.
Homogeneously mixed colloidal suspensions of reduced graphene oxide, or RGO, and layered manganate nanosheets have been synthesized by a simple addition of the exfoliated colloid of RGO into that of layered MnO(2). The obtained mixed colloidal suspensions with the RGO/MnO(2) ratio of ≤0.3 show good colloidal stability without any phase separation and a negatively charged state with a zeta (ζ) potential of -30 to -40?mV. The flocculation of these mixed colloidal suspensions with lithium cations yields porous nanocomposites of Li/RGO-layered MnO(2) with high electrochemical activity and a markedly expanded surface area of around 70-100?m(2) g(-1). Relative to the Li/RGO and Li/layered MnO(2) nanocomposites (≈116 and ≈167?F?g(-1)), the obtained Li/RGO-layered MnO(2) nanocomposites deliver a larger capacitance of approximately 210?F?g(-1) with good cyclability of around 95-97?% up to the 1000th cycle, thus indicating the positive effect of hybridization on the electrode performances of RGO and lithium manganate. Also, an electrophoretic deposition of the mixed colloidal suspensions makes it possible to easily fabricate uniform hybrid films composed of graphene and manganese oxide. The obtained films show a distinct electrochemical activity and a homogeneous distribution of RGO and MnO(2). The present experimental findings clearly demonstrate that the utilization of the mixed colloidal suspensions as precursors provides a facile and universal methodology to synthesize various types of graphene/metal oxide hybrid materials.  相似文献   

15.
All of the copper in the layered oxysulfides Sr2MnO2Cu1.5S2 and Sr2MnO2CU3.5S3 may be extruded as the element and the copper ions replaced quasi-reversibly by lithium ions in reductive topotactic ion exchange reactions; dramatic changes in magnetic properties result.  相似文献   

16.
以过渡金属乙酸盐和乙酸锂为原料,柠檬酸为螯合剂,通过溶胶-凝胶法结合高温煅烧法制备了锂离子电池富锂锰基正极材料xLi2MnO3·(1-x)Li[Ni1/3Mn1/3Co1/3]O2,采用X射线衍射(XRD),扫描电子显微镜(SEM)和电化学性能测试对所得样品的结构,形貌及电化学性能进行了表征.结果表明:x=0.5时,在900°C下煅烧12h得到颗粒均匀细小的层状xLi2MnO3·(1-x)Li[Ni1/3Mn1/3Co1/3]O2材料,并具有良好的电化学性能,在室温下以20mA·g-1的电流密度充放电,2.0-4.8V电位范围内首次放电比容量高达260.0mAh·g-1,循环40次后放电比容量为244.7mAh·g-1,容量保持率为94.12%.  相似文献   

17.
以高锰酸钾和醋酸锰为前驱体, 通过液相沉淀法合成得到二氧化锰. 在不同温度热处理条件下研究二氧化锰的结构转变及其作为超级电容器电极材料的电化学行为. 采用X射线衍射(XRD), 扫描电镜(SEM), 氮气物理吸附和热重(TG)等手段表征产物的结构特点; 采用循环伏安和恒流充放电等方法表征其电化学行为. 结果表明: 合成的二氧化锰是具有中孔特征的α-MnO2, 比表面积为253 m2·g-1, 颗粒尺寸在50-100 nm之间. 350 °C以下的低温热处理使氧化锰仍能保持α-MnO2的晶体结构, 比表面积为170 m2·g-1左右, 单电极比电容值由原来未热解时的267 F·g-1增加到250 °C热处理后的286 F·g-1. 高温热处理(>450 °C)导致氧化锰逐渐过渡为α-Mn2O3, 且表面积下降约为30 m2·g-1, 比电容急剧下降. 低温热处理后氧化锰的电化学稳定性明显提高, 在50 mV·s-1的快速扫描速率下, 电极具有良好的倍率特性.  相似文献   

18.
应用量子化学电荷自洽离散变分Xα(SCC-DV-Xα)方法,研究了S-Al、S-Co复合掺杂增强尖晶石结构锂锰氧化物稳定性的作用机制.计算结果表明, S-Al复合掺杂锂锰尖晶石和S-Co复合掺杂锂锰尖晶石中的共价键强度均比未掺杂尖晶石LiMn2O4中的强,且与MnO2中的共价键强度相近; S-Al, S-Co复合掺杂尖晶石中Mn的电荷也与MnO2模型[Mn6O26]28-中十分接近. Mn原子的电荷密度次序是MnO2≈掺硫铝后锰锂尖晶石≈掺硫钴后的锂锰尖晶石< 锰锂尖晶石.即[LixMn3Co3O20S6]n-和[LixMn3Al3O20S6]n-中Mn的状态与MnO2中的Mn相似.上述结果揭示了S和非Jahn-Teller效应阳离子(Al3+,Co3+)复合掺杂尖晶石结构锂锰氧化物在电化学过程中不会发生Jahn-Teller畸变的内在原因.  相似文献   

19.
MnO has a high theoretical capacity, moderate discharge plateau, and low polarization when it is used as the anode material in lithium battery. However, the issues that limit its application are its poor conductivity and large volume changes, which can easily result in the collapse of electrode structure during long-term cycling. In the present work, a carbon-coated MnO/graphene 3D-network anode material is synthesized by an electrostatic adsorption of dispersed precipitates precipitation method. The MnO nanoparticles coated by carbon are uniformly distributed on the surface of graphene nanosheets and form a 3D sandwich-like nanostructure. A carbon layer is coated on the surface of MnO nanoparticles, which slows down the volume expansion in the process of lithium intercalation. The graphene nanosheets are cross-linked through carbons in this 3D nanostructure, which provides mechanical support and effective electron conduction pathways during the charge-discharge. The electrochemical tests indicate that the prepared 3D carbon-coated MnO/graphene electrode exhibits an excellent rate capacity of 1247.3 and 713.2 mAh g?1 at 100 and 1000 mA g?1, respectively. The capacity is 792.2 mAh g?1 after long cycle at a current density of 1000 mA g?1. The specific capacity is higher than that of MnO-based composite lithium anode materials currently reported. The superior rate and cycling performances are attributed to the unique 3D-network structure, which provides an effectively conductive network, buffers volume expansion, and prevents falling and aggregation of MnO in the charge and discharge process of the electrode materials. The 3D-structured carbon-coated MnO/graphene anode material will have an excellent application prospect.
Graphical abstract Cyclic performance at 1 A g?1 and SEM images (inset) of the 3D-structured carbon-coated MnO/graphene nanocomposite.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号