首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Matroid bundles, introduced by MacPherson, are combinatorial analogues of real vector bundles. This paper sets up the foundations of matroid bundles. It defines a natural transformation from isomorphism classes of real vector bundles to isomorphism classes of matroid bundles. It then gives a transformation from matroid bundles to spherical quasifibrations, by showing that the geometric realization of a matroid bundle is a spherical quasifibration. The poset of oriented matroids of a fixed rank classifies matroid bundles, and the above transformations give a splitting from topology to combinatorics back to topology. A consequence is that the mod 2 cohomology of the poset of rank k oriented matroids (this poset classifies matroid bundles) contains the free polynomial ring on the first k Stiefel-Whitney classes.  相似文献   

2.
Several combinatorial structures exhibit a duality relation that yields interesting theorems, and, sometimes, useful explanations or interpretations of results that do not concern duality explicitly. We present a common characterization of the duality relations associated with matroids, clutters (Sperner families), oriented matroids, and weakly oriented matroids. The same conditions characterize the orthogonality relation on certain families of vector spaces. This leads to a notion of abstract duality.  相似文献   

3.
Following an “ansatz” of Björner and Ziegler [BZ], we give an axiomatic development of finite sign vector systems that we callcomplex matroids. This includes, as special cases, the sign vector systems that encode complex arrangements according to [BZ], and the complexified oriented matroids, whose complements were considered by Gel'fand and Rybnikov [GeR]. Our framework makes it possible to study complex hyperplane arrangements as entirely combinatorial objects. By comparing complex matroids with 2-matroids, which model the more general 2-arrangements introduced by Goresky and MacPherson [GoM], the essential combinatorial meaning of a “complex structure” can be isolated. Our development features a topological representation theorem for 2-matroids and complex matroids, and the computation of the cohomology of the complement of a 2-arrangement, including its multiplicative structure in the complex case. Duality is established in the cases of complexified oriented matroids, and for realizable complex matroids. Complexified oriented matroids are shown to be matroids with coefficients in the sense of Dress and Wenzel [D1], [DW1], but this fails in general.  相似文献   

4.
In the context of oriented matroids we establish and elaborate upon an abstraction of linear programming duality foreseen by Rockafellar in his work on elementary vectors. We describe a pivoting operation for oriented matroids and a finite pivoting method, which elucidate the combinatorial nature of Dantzig's simplex method. The pivoting method specializes, when the oriented matroids arise from real vector spaces, to the simplex method with a new pivot selection rule. A very simple pivot selection rule for which finiteness has been established in the linear programming context, but not in the broader setting of oriented matroids, is also described.  相似文献   

5.
We explore a combinatorial theory of linear dependency in complex space, complex matroids, with foundations analogous to those for oriented matroids. We give multiple equivalent axiomatizations of complex matroids, showing that this theory captures properties of linear dependency, orthogonality, and determinants over ? in much the same way that oriented matroids capture the same properties over ?. In addition, our complex matroids come with a canonical S 1 action analogous to the action of ?? on a complex vector space. Our phirotopes (analogs of determinants) are the same as those studied previously by Below, Krummeck, and Richter-Gebert (Discrete and Computational Geometry, Springer, pp.?203?C233, 2003) and Delucchi (Diploma Thesis, ETH Zurich, 2003). We further show that complex matroids cannot have vector axioms analogous to those for oriented matroids.  相似文献   

6.
We study the combinatorial properties of a tropical hyperplane arrangement. We define tropical oriented matroids, and prove that they share many of the properties of ordinary oriented matroids. We show that a tropical oriented matroid determines a subdivision of a product of two simplices, and conjecture that this correspondence is a bijection.  相似文献   

7.
This paper deals with a class of computational problems in real algebraic geometry. We introduce the concept of final polynomials as a systematic approach to prove nonrealizability for oriented matroids and combinatorial geometries.Hilbert's Nullstellensatz and its real analogue imply that an abstract geometric object is either realizable or it admits a final polynomial. This duality has first been applied by Bokowski in the study of convex polytopes [7] and [11], but in these papers the resulting final polynomials were given without their derivations.It is the objective of the present paper to fill that gap and to describe an algorithm for constructing final polynomials for a large class of nonrealizable chirotopes. We resolve a problem posed in [10] by proving that not every realizable simplicial chirotope admits a solvability sequence. This result shows that there is no easy combinatorial method for proving nonrealizability and thus justifies our final polynomial approach.  相似文献   

8.
Several polynomials are of use in various enumeration problems concerning objects in oriented matroids. Chief among these is the Radon catalog. We continue to study these, as well as the total polynomials of uniform oriented matroids, by considering the effect on them of mutations of the uniform oriented matroid. The notion of a ``mutation polynomial' is introduced to facilitate the study. The affine spans of the Radon catalogs and the total polynomials in the appropriate rational vector spaces of polynomials are determined, and bases for the Z -modules generated by the mutation polynomials are found. The Radon polynomials associated with alternating oriented matroids are described; it is conjectured that a certain extremal property, like that held by cyclic polytopes among simplicial polytopes, is possessed by them. Received November 20, 1998, and in revised form August 21, 1999. Online publication May 19, 2000.  相似文献   

9.
In this paper, the basic properties of oriented matroids are examined. A topological representation theorem for oriented matroids is proven, utilizing the notion of an “arrangement of pseudo-hemispheres”. The duality theorem of linear programming is extended to oriented matroids.  相似文献   

10.
The present paper is the first in a series of four dealing with a mapping, introduced by the present authors, from orientations to spanning trees in graphs, from regions to simplices in real hyperplane arrangements, from reorientations to bases in oriented matroids (in order of increasing generality). This mapping is actually defined for ordered oriented matroids. We call it the active orientation-to-basis mapping, in reference to an extensive use of activities, a notion depending on a linear ordering, first introduced by W.T. Tutte for spanning trees in graphs. The active mapping, which preserves activities, can be considered as a bijective generalization of a polynomial identity relating two expressions–one in terms of activities of reorientations, and the other in terms of activities of bases–of the Tutte polynomial of a graph, a hyperplane arrangement or an oriented matroid. Specializations include bijective versions of well-known enumerative results related to the counting of acyclic orientations in graphs or of regions in hyperplane arrangements. Other interesting features of the active mapping are links established between linear programming and the Tutte polynomial.We consider here the bounded case of the active mapping, where bounded corresponds to bipolar orientations in the case of graphs, and refers to bounded regions in the case of real hyperplane arrangements, or of oriented matroids. In terms of activities, this is the uniactive internal case. We introduce fully optimal bases, simply defined in terms of signs, strengthening optimal bases of linear programming. An optimal basis is associated with one flat with a maximality property, whereas a fully optimal basis is equivalent to a complete flag of flats, each with a maximality property. The main results of the paper are that a bounded region has a unique fully optimal basis, and that, up to negating all signs, fully optimal bases provide a bijection between bounded regions and uniactive internal bases. In the bounded case, up to negating all signs, the active mapping is a bijection.  相似文献   

11.
e present a number of combinatorial characterizations of K-matrices. This extends a theorem of Fiedler and Pták on linear-algebraic characterizations of K-matrices to the setting of oriented matroids. Our proof is elementary and simplifies the original proof substantially by exploiting the duality of oriented matroids. As an application, we show that any simple principal pivot method applied to the linear complementarity problems with K-matrices converges very quickly, by a purely combinatorial argument.  相似文献   

12.
We study the space of all extensions of a real hyperplane arrangement by a new pseudohyperplane, and, more generally, of an oriented matroid by a new element. The question whether this space has the homotopy type of a sphere is a special case of the “Generalized Baues Problem” of Billera, Kapranov, and Sturmfels, via the Bohne-Dress theorem on zonotopal tilings. We prove that the extension space is spherical for the class of strongly euclidean oriented matroids. This class includes the alternating matroids and all oriented matroids of rank at most 3 or of corank at most 2. In general it is not known whether the extension space is connected for all realizable oriented matroids (hyperplane arrangements). We show that the subspace of realizable extensions is always connected but not necessarily spherical. Nonrealizable oriented matroids of rank 4 with disconnected extension spaces were recently constructed by Mnëv and Richter-Gebert.  相似文献   

13.
We give a short combinatorial proof of the Euler relation for convex polytopes in the context of oriented matroids. Using counting arguments we derive from the Euler relation several identities holding in the lattice of flats of an oriented matroid. These identities are proven for any matroid by Möbius inversion.  相似文献   

14.
We obtain an infinite class of simple non-algebraic matroids of rank 3, the minors of which are vector matroids and therefore algebraic. We prove that the matroids are non-algebraic with the aid of a theory of harmonic conjugates in full algebraic combinatorial geometries [7].Research supported by the Swedish Natural Science Research Council.  相似文献   

15.
16.
We prove constructively duality theorems of linear and quadratic programming in the combinatorial setting of oriented matroids. One version of our algorithm for linear programing has the interesting feature of maintaining feasibility. The development of the quadratic programming duality result suggests the study of properties of square matrices such as symmetry and positive semi-definiteness in the context of oriented matroids.  相似文献   

17.
The object of this paper is to study continuous vector bundles, over real algebraic varieties, admitting an algebraic structure. For large classes of real varieties, we obtain explicit information concerning the Grothendieck group of algebraic vector bundles. We show that in many cases this group is small compared to the corresponding group of continuous vector bundles. These results are used elsewhere to study the geometry of real algebraic varieties.Dedicated to Professor Alexander Grothendieck on the occasion of his 60th birthdaySupported by the NSF Grant DMS-8602672.  相似文献   

18.
《Computational Geometry》2005,30(2):129-144
A convex geometry is a combinatorial abstract model introduced by Edelman and Jamison which captures a combinatorial essence of “convexity” shared by some objects including finite point sets, partially ordered sets, trees, rooted graphs. In this paper, we introduce a generalized convex shelling, and show that every convex geometry can be represented as a generalized convex shelling. This is “the representation theorem for convex geometries” analogous to “the representation theorem for oriented matroids” by Folkman and Lawrence. An important feature is that our representation theorem is affine-geometric while that for oriented matroids is topological. Thus our representation theorem indicates the intrinsic simplicity of convex geometries, and opens a new research direction in the theory of convex geometries.  相似文献   

19.
A generalization of the notion of almost complex structure is defined on a nonorientable smooth manifold M of even dimension. It is defined by giving an isomorphism J from the tangent bundle TM to the tensor product of the tangent bundle with the orientation bundle such that JJ=–Id TM . The composition JJ is realized as an automorphism of TM using the fact that the orientation bundle is of order two. A notion of integrability of this almost complex structure is defined; also the Kähler condition has been extended. The usual notion of a complex vector bundle is generalized to the nonorientable context. It is a real vector bundle of even rank such that the almost complex structure of a fiber is given up to the sign. Such bundles have generalized Chern classes. These classes take value in the cohomology of the tensor power of the local system defined by the orientation bundle. The notion of a holomorphic vector bundle is extended to the context under consideration. Stable vector bundles and Einstein–Hermitian connections are also generalized. It is shown that a generalized holomorphic vector bundle on a compact nonorientable Kähler manifold admits an Einstein–Hermitian connection if and only if it is polystable.  相似文献   

20.
Matroids are combinatorial abstractions for point configurations and hyperplane arrangements, which are fundamental objects in discrete geometry. Matroids merely encode incidence information of geometric configurations such as collinearity or coplanarity, but they are still enough to describe many problems in discrete geometry, which are called incidence problems. We investigate two kinds of incidence problem, the points–lines–planes conjecture and the so-called Sylvester–Gallai type problems derived from the Sylvester–Gallai theorem, by developing a new algorithm for the enumeration of non-isomorphic matroids. We confirm the conjectures of Welsh–Seymour on ≤11 points in ℝ3 and that of Motzkin on ≤12 lines in ℝ2, extending previous results. With respect to matroids, this algorithm succeeds to enumerate a complete list of the isomorph-free rank 4 matroids on 10 elements. When geometric configurations corresponding to specific matroids are of interest in some incidence problems, they should be analyzed on oriented matroids. Using an encoding of oriented matroid axioms as a boolean satisfiability (SAT) problem, we also enumerate oriented matroids from the matroids of rank 3 on n≤12 elements and rank 4 on n≤9 elements. We further list several new minimal non-orientable matroids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号