首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Abstract— The action spectrum for the generation of singlet oxygen (1O2) from mitochondrial membranes under aerobic conditions was measured at wavelengths between 360 and 600 nm, using sub-mitochondrial particles (SMP) prepared from soybean hypocotyls. The spectrum, showing a peak at about 420 nm, remarkably resembles the absorption spectra of the Fe-S centers of nonheme iron proteins. Disruption of the Fe-S centers by treating SMP with mersalyl acid resulted in a substantial decrease in the efficiency of 1O2 generation, leaving an action spectrum whose pattern is significantly similar to the absorption spectrum of flavins, at least in the region of near UV and blue light wavelengths. Estimating the contribution of the Fe-S centers to the generation of 1O2 from SMP, we suggest that the Fe-S centers act as very important endogenous photosensitizers in plant cells, in so far as the type II mechanism is concerned. Possible involvement of mitochondrial flavoproteins in the generation of 1O2 is also discussed.  相似文献   

2.
Photoinhibition of the light-regulated key enzymes of the photosynthetic carbon reduction (PCR) cycle was investigated using chloroplasts isolated from spinach leaves. Light quality dependence of the light-induced activity change (activation or inactivation) of key PCR enzymes in situ demonstrated that, while light activation is promoted mainly by red light (Λ.> 600 nm), inactivation takes place largely in the region of blue light (Λ < 500 nm). Inactivation was suppressed by a lipid soluble singlet oxygen (1O2,1Δg) quencher. When “stromal protein” was subjected to a severe photoinhibitory treatment, no significant loss of activity was observed for any PCR enzyme assayed. However, the inclusion of thylakoids in the photolysis system resulted in a substantial inactivation of the enzymes; this inactivation was significantly diminished in the presence of imidazole and enhanced to some extent by a partial deuteration of medium. In contrast, superoxide dismutase did not exert any effect. The blue light-induced inactivation of the enzymes was remarkably decreased in the presence of thylakoids whose Fe-S centers were destroyed. The results obtained in this study suggest that photoinactivation of the PCR enzymes in situ is mediated mainly by 1O2, which is photoproduced primarily by the Fe-S centers of thylakoids and diffuses into the stroma.  相似文献   

3.
The possible involvement of Fe-S clusters in photodynamic reactions as endogenous sensitizing chromophores in cells has been investigated, by using an artificial non-heme iron protein (ANHIP) derived from bovine serum albumin and ferredoxins isolated from spinach and a red marine algae. Ferredoxins and ANHIP, when exposed to visible light, generate singlet oxygen, as measured by the imidazole plus RNO method. Irradiation with intense blue light of the ANHIP-entrapped liposomes caused severe membrane-damage such as liposomal lysis and lipid peroxidation. In the presence of ANHIP, isocitrate dehydrogenase and fructose-1,6-diphosphatase were photoinactivated by blue light. However, all of these photosensitized reactions were significantly suppressed by a singlet oxygen (1O2) quencher, azide, but enhanced by a medium containing deuterium oxide. Further, the Fe-S proteins with the prosthetic groups destroyed did not initiate the blue light-induced reactions. In addition, the action spectrum for 1O2 generation from ANHIP was very similar to the visible absorption spectrum of Fe-S centers. The results obtained in this investigation appear consistent with the suggestion that Fe-S centers are involved in photosensitization in cells via a singlet oxygen mechanism.  相似文献   

4.
Abstract. Irradiation of isolated membranes of Sarcina lutea (Micrococcus luteus) with blue light rapidly inactivated the respiratory malate oxidase system under aerobic but not anaerobic conditions. This inactivation was much faster than that seen in whole cells suggesting that the intact organism possesses protective mechanisms capable of preventing or repairing light damage. Three photosensitive sites have been detected by comparing the effect of blue light on membranes from the carotenoid-containing wild-type and a carotenoidless mutant. The sites have been identified as the initial malate dehydrogenase enzyme, a flavoprotein assayed by phenazine methosulphate reduction, a sulphydryl group associated with the dehydrogenase complex but not involved in phenazine methosulphate reduction and the respiratory quinone, menaquinone. Menaquinone was found to be sensitive only in carotenoidless membranes and not in membranes from the pigmented wild-type. Studies of the variation of photosensitivity with wavelength suggest that the three sites are sensitized by different chromophores and that the quinone acts as its own photosensitizer.  相似文献   

5.
Abstract— The possible association of photodynamic sensitization with photoinhibition damage to the photosystem II complex (PS II) has been investigated using isolated intact thylakoids from pea leaves. For this study singlet oxygen (1O2), photoproduced by endogenous chromophores that are independent of the function of PS II, was assumed to be the major reactive intermediate involved in the photoinhibition process. When thylakoid samples preincubated with rose bengal were subjected to exposure to relatively weak green light (500–600 nm) under aerobic conditions, PS II was severely damaged. The pattern of the rose bengal-sensitized inhibition of PS II was similar to that of high light-induced damage to PS II: (1) the secondary quinone (QB)-dependent electron transfer through PS II is inactivated much faster than the QB-independent electron flow, (2) PS II activity is lost prior to degradation of the D1 protein, (3) diuron, an herbicide that binds to the QB domain on the D1 protein, prevents D1 degradation, and (4) PS II is damaged to a greater extent by the deuteration of thylakoid suspensions but to a lesser extent by the presence of histidine. Furthermore, it was observed that destroying thylakoid Fe-S centers resulted in a marked reduction of high light-induced PS II damage. These results may suggest that the primary processes of photoinhibition are mediated by 1O2 and that Fe-S centers, which are located in some membrane components, but not in PS II, play an important role in photogenerating the activated oxygen immediately responsible for the initiation of photodamage to PS II.  相似文献   

6.
Abstract— When the washed cells of Rhodococcus sp. N-771 were incubated at 5°C in the dark under aerobic condition, their nitrile hydratase was inactivated after several days. Most of this activity was recovered by light irradiation. The speed of inactivation in the dark was affected by incubation temperature and amount of oxygen supply. Under anerobic conditions, however, this reversible dark inactivation was not observed; the photoirradiation of the cells irreversibly inactivated the initial cell activity by about 15%. The enzyme activity of the cell-free extract of the inactivated cells can also be recovered when photoirradiated. This process did not require oxygen, and was not prevented by dialysis. However, the enzyme of the cell-free extract could not be inactivated by dark, aerobic incubation nor by photoirradiation after dark anaerobic incubation.  相似文献   

7.
PORPHYRIN-INDUCED PHOTODAMAGE TO ISOLATED HUMAN NEUTROPHILS   总被引:1,自引:0,他引:1  
Abstract— Human neutrophils were irradiated with light at 340–380 nm in the presence of low concentrations of protoporphyrin or uroporphyrin. At increasing light doses or increasing concentrations of protoporphyrin, the neutrophils rapidly lost the ability of locomotion. Also, neutrophil chemiluminescence and hexose-monophosphate shunt activity rapidly declined. An early event was leakage of endogenous K+ followed by lactate dehydrogenase and at a later stage leakage of particle-bound acid phosphatase. A number of cellular enzymes were inactivated, the susceptibility to inactivation decreased in the order: succinate dehydrogenase > lactate dehydrogenase > glutamate dehydrogenase > acid phosphatase. Uroporphyrin had no effect on neutrophil functions, leakage of K+, or cellular enzymes. The results suggest that photodamage to the plasma membrane and the mitochondria are earlier events than photodamage to lysosomes.  相似文献   

8.
Abstract— During prolonged continuous irradiation with red light the specific activity of uridine 5'-diphosphoglucose (UDPG) pyrophosphorylase (uridine 5'-triphosphate: glucose 1-phosphate uridylyl-transferase EC 2.7.7.9) decreased in Acetabularia mediterranea Lamouroux (=A. acetabulum (L.) Silva). Subsequent blue light restored the original activity within a comparatively short period of 3 to 4 days. Computer-aided quantitative evaluation of density labelling experiments showed that the synthesis of the enzyme was accelerated about four-fold during the period of activation by blue light. A similar increase in the rate of synthesis was found for hydroxypyruvate reductase (EC 1.1.1.81), a control enzyme that showed no blue light-dependent changes in the specific activity under these conditions. The increase in the rate of enzyme synthesis was caused by an overall stimulation of the cytosolic translation. Degradation of UDPG pyrophosphorylase was unaffected by blue light, while the half life of hydroxypyruvate reductase was shortened about two-fold compared to continuous red light. Thus, degradation of proteins appears to be selectively light dependent in Acetabularia.
Model calculations for enzyme amount and enzyme synthesis were carried out using the measurements of enzyme activity, rates of cytosolic protein synthesis, and degradation constants of the enzymes. Assuming that activities represented amounts of the given enzymes, these calculations indicated a selective activation of UDPG pyrophosphorylase synthesis by blue light since it did not coincide with the overall stimulation of protein synthesis in the cytosol, in contrast to hydroxypyruvate reductase.  相似文献   

9.
Abstract— Envelopes were isolated from the carotenogenic bacterium Micrococcus roseus , which is subject to photodynamic killing in the presence of a photosensitizing dye but not in the absence of such a dye. Envelope preparations contained 88 per cent of the total cellular carotenoids, 20% of the NADH oxidase, 100 per cent of the ATPase and 30% of the succinic dehydrogenase activity. NADH oxidase activity in envelopes was stimulated 2–5-fold by light in the presence of dye; this was followed by inactivation. In the presence of dye, ATPase was inactivated by light and 25 per cent of the succinic dehydrogenase activity was lost. In the absence of dye, responses were extended over a longer period of time, but similar patterns were observed for the three enzymes, indicating that envelopes contain an endogenous photosensitizer(s). Carotenoid-deficient cells were obtained after growth in medium containing diphenylamine. But all three enzymes showed evidence of instability in envelope preparations, indicating that diphenylamine affects membrane structure in addition to inhibiting synthesis of colored carotenoids.  相似文献   

10.
The inhibitory effects of pure galloylglucose (1,2,3,4,6-penta-O-galloyl-beta-D-glucose) on the respiratory chain of rat liver mitochondria were investigated. The respiratory control ratio (RCR) decreased by 50% on addition of 20 microM pentagalloylglucose to highly coupled mitochondria, but the adenosine-5'-diphosphate/oxygen (ADP/O) ratio decreased only slightly. The RCR disappeared and the ADP/O ratio could not be measured at concentrations of pentagalloylglucose above 30 microM. On the other hand, the uncoupler-induced oxygen consumption was also inhibited. These findings suggest that pentagalloylglucose at low concentrations inhibits the electron transport system to decrease the RCR, but scarcely impairs the membrane, practically retaining the coupled reaction, while at high concentrations it impairs the structural integrity of the mitochondrial membrane. Pentagalloylglucose competitively inhibited succinate dehydrogenase activity, and noncompetitively inhibited reduced nicotinamide adenine dinucleotide (NADH) dehydrogenase and ubiquinol-1 oxidase activities of submitochondrial particles (SMP). However, it did not show significant inhibition of the cytochrome c oxidase activity of SMP. It is thus concluded that pentagalloylglucose, which is the lowest-molecular-weight component of tannic acid, exerts its effect on mitochondrial respiration and oxidative phosphorylation through action on the membrane and on succinate dehydrogenase, NADH dehydrogenase and cytochrome bc1 complex of mitochondria.  相似文献   

11.
Protein film electrochemistry (PFE) was utilized to characterize the catalytic activity and oxidative inactivation of a bidirectional [NiFe]-hydrogenase (HoxEFUYH) from the cyanobacterium Synechocystis sp. PCC 6803. PFE provides precise control of the redox potential of the adsorbed enzyme so that its activity can be monitored under changing experimental conditions as current. The properties of HoxEFUYH are different from those of both the standard uptake and the "oxygen-tolerant" [NiFe]-hydrogenases. First, HoxEFUYH is biased toward proton reduction as opposed to hydrogen oxidation. Second, despite being expressed under aerobic conditions in vivo, HoxEFUYH is clearly not oxygen-tolerant. Aerobic inactivation of catalytic hydrogen oxidation by HoxEFUYH is total and nearly instantaneous, producing two inactive states. However, unlike the Ni-A and Ni-B inactive states of standard [NiFe]-hydrogenases, both of these states are quickly (<90 s) reactivated by removal of oxygen and exposure to reducing conditions. Third, proton reduction continues at 25-50% of the maximal rate in the presence of 1% oxygen. Whereas most previously characterized [NiFe]-hydrogenases seem to be preferential hydrogen oxidizing catalysts, the cyanobacterial enzyme works effectively in both directions. This unusual catalytic bias as well as the ability to be quickly reactivated may be essential to fulfilling the physiological role in cyanobacteria, organisms expected to experience swings in cellular reduction potential as they switch between aerobic conditions in the light and dark anaerobic conditions. Our results suggest that the uptake [NiFe]-hydrogenases alone are not representative of the catalytic diversity of [NiFe]-hydrogenases, and the bidirectional heteromultimeric enzymes may serve as valuable models to understand the diverse mechanisms of tuning the reactivity of the hydrogen activating site.  相似文献   

12.
Abstract— Bilirubin has been found to sensitize the photodynamic inactivation of several enzymes in the isolated membrane (ghost) of the human red cell. When ghosts (pH 8.0, 10°C) + bilirubin (0.1 mM) were irradiated with blue light (350 Wm-2), the activity of glyceraldehyde 3-phosphate dehydrogenase decayed with t1/2? 15 min. No effect was observed in the absence of pigment or with incident yellow light. Diazabicyclo-octane (DABCO) sharply reduced the inactivation rate, suggesting that 1O2 is involved. Sodium dodecyl sulfate-gel electrophoresis of ghosts containing fully inactivated glyceraldehyde 3-phosphate dehydrogenase revealed no change in the polypeptide band corresponding to the subunit of the enzyme. Solubilized enzyme, which was similarly photosensitive, could be partially protected by nicotinamide adenine dinucleotide or glyceraldehyde 3-phosphate. The integral enzymes Mg2+-ATPase, Na+, K+-ATPase, and acetylcholinesterase were also affected. Under the above conditions and bilirubin = 0.37 mM, these enzymes were photoinactivated in first-order fashion, k? 2, 1.2 and 0.2 h-1, respectively. The rate of decay of total ATPase was found to vary as the square root of the bilirubin concentration over the range 7–370 μM. At a fixed bilirubin concentration (0.37 mM), this rate was also shown to be directly proportional to light intensity. Inasmuch as the —SH content of bilirubin-containing ghosts diminished during irradiation, oxidation of essential cysteine residues could be responsible for the inactivation of some of the enzymes studied.  相似文献   

13.
The present study is an effort to identify a potent chemopreventive agent against cancer, in which oxidative stress plays an important causative role. The modulatory effect of mangiferin on mitochondrial lipid peroxidation (LPO), tricarboxylic acid (TCA) cycle key enzymes and electron transport chain complexes was investigated against lung carcinogenesis induced by benzo(a)pyrene (50 mg kg(-1) b/w orally) in Swiss albino mice. Decreased activities of electron transport chain complexes and TCA cycle key enzymes such as isocitrate dehydrogenase (ICDH), succinate dehydrogenase (SDH), malate dehydrogenase (MDH) and alpha-ketoglutarate dehydrogenase (alpha-KGDH), in lung cancer bearing animals were observed. Pre- and post-treatment with mangiferin (100 mg kg(-1) b/w orally) for 18 weeks, prevented the above biochemical changes, which were inclined towards normal control animal values. This study further confirms the chemopreventive and chemotherapeutic effect of mangiferin and these results are consistent with our hypothesis that mangiferin is a promising chemopreventive agent.  相似文献   

14.
Abstract— Nitrate reductase from eukaryotes can be reversibly inactivated, blue light being an effective activating agent both in vitro and in vivo. Hydroxylamine proved to be a powerful inactivating agent of Ankistrodesmus braunii nitrate reductase. Irradiation with blue light of NH2OH-inactivated nitrate reductase, specially in the presence of μM amounts of FAD, promoted the recovery of the enzyme activity. Similarly, photoexcited methylene blue reactivated spinach nitrate reductase. On the other hand, in vitro nitrate reductase is highly susceptible to photodynamic inactivation caused by singlet O2. Aerobic incubation of the active spinach enzyme with either FMN or methylene blue under either blue or red light respectively led to its irreversible inactivation. Irradiation of frozen and thawed spinach leaf discs also promoted, in situ, an irreversible inactivation of nitrate reductase, provided that 62 was present in the incubation mixture. Thus, either in vitro or in situ, light can cause two quite different responses of nitrate reductase, its blue light-dependent photoactivation in a flavin sensitized reaction and its photodynamic inactivation in a singlet O2-dependent process.  相似文献   

15.
Human adenocarcinoma cells of the line WiDr have been treated with 2 mM 5-aminolaevulinic acid (5-ALA) in the presence of 10% foetal calf serum. The treatment induces a linear accumulation of protoporphyrin IX (PpIX) for at least 7.5 h. After 7.5 h of incubation about 45% of the PpIX accumulated is cell-bound, while the rest is found in the medium (25%) or lost from the cells during washing with phosphate-buffered saline (30%). Exposure to white light at an intensity of 30 W/m2 for 18 min results in 95% reduction of clonogenicity in cells treated with 2 mM 5-ALA for 3.5 h. The enzymatic activities of enzymes located in cytosol (glyceraldehyde 3-phosphate dehydrogenase and lactate dehydrogenase) and lysosomes (acid phosphatase and beta-glucuronidase) are not influenced by a 5-ALA and light treatment inactivating about 35% of the cells. The MTT assay, which reflects mitochondrial dehydrogenase activity, but not succinate dehydrogenase, is partly inhibited by the same treatment. Treatment with 5-ALA in the absence of light increases O2 consumption by a factor of two, while the O2 consumption is inhibited when 5-ALA treatment is combined with exposure to light. In addition, 5-ALA and light exposure enhance accumulation of rhodamine 123 by 40% and reduce the intracellular ATP level by 25%. Confocal laser scanning microscopical analysis indicates granular perinuclear localization of the PpIX formed by 5-ALA treatment. In conclusion, photodynamic treatment using 5-ALA as a prodrug induces damage to mitochondrial function without inhibiting lysosomal and cytosolic marker enzymes.  相似文献   

16.
Photodynamic treatment of murine L929 fibroblasts with hematoporphyrin-derivative resulted in the inactivation of cytosolic, mitochondrial and lysosomal enzymes and in a decrease in cellular adenosine triphosphate and reduced glutathione concentrations. Comparison of these results with those of previous studies revealed that transmembrane transport systems and DNA repair enzymes are inactivated after much shorter illumination periods than are intracellular enzymes. Although the pattern of photodynamic damage altered by varying the protocol of preincubation with hematoporphyrin-derivative and washing, it appeared that under all experimental conditions the plasma membrane was much more sensitive to photodynamic damage than were the intracellular enzymes. Lysosomal membrane disruption with subsequent detrimental release of lysosomal enzymes has been implicated previously in certain forms of porphyrin-induced photodynamic cell destruction. Cytochemical studies on enzyme localization virtually exclude such a mechanism in hematoporphyrin-derivative-induced cell inactivation in L929 fibroblasts.  相似文献   

17.
Sohn OJ  Han KA  Rhee JI 《Talanta》2005,65(1):185-191
In this study, a flow injection analysis (FIA) system using a cartridge of immobilized isocitrate lyase (ICL) and isocitrate dehydrogenase (ICDH) was developed to monitor the concentrations of succinic acid in biotechnological processes. The ICL and ICDH immobilized on VA-Epoxy Biosynth E3-carrier had a good operational lifetime (up to 24 h) and storage stability (up to 30 days). The FIA system with the immobilized ICL/ICDH cartridge was characterized with respect to the factors affecting the activity of the immobilized enzymes, such as pH of carrier solution, temperature, sample matrix, etc. Optimal pH value of the immobilized enzymes was slightly shifted in the alkaline range, i.e. 9.0. Some components such as 10 g l−1 lactose, 3 g l−1 malate and 3 g l−1 oxaloacetate in sample solution had significant activating effects (more than 10%) on the response of the FIA system. But the activity of the immobilized ICL and ICDH was not largely influenced by some components like imidazole (1 mM), sodium azide (10 mM) and semicarbazide (2 g l−1) added to carrier buffer solution. The FIA system with an enzyme cartridge was applied to on-line monitor the concentrations of succinic acid in a continuously stirred reactor and a fermentation process of immobilized Escherichia coli, and showed good sensitivity and reliability of the FIA system developed in this work.  相似文献   

18.
Phototoxicity of visible light laser on the porphyrin-producing bacteria, Porphyromonas gingivalis, in the absence of photosensitizers and under aerobic conditions was shown in previous studies. Recently, we found that the noncoherent visible light sources at wavelengths of 400-500 nm, commonly used in restorative dentistry, induced a phototoxic effect on P. gingivalis, as well as on Fusobacterium nucleatum, and to a lesser extent on the Streptococci sp. To elucidate the mechanism of this phototoxic effect, P. gingivalis and F. nucleatum were exposed to light (1) under aerobic and anaerobic environments and (2) in the presence of scavengers of reactive oxygen species (ROS). Phototoxic effect was not observed when the bacteria were exposed to light under anaerobic conditions. Dimethyl thiourea, a hydroxyl radical scavenger, was effective in reducing phototoxicity (P 相似文献   

19.
Photoinactivation of vesicular stomatitis virus (VSV) in stroma-free hemoglobin (SFH) was carried out using methylene blue (MB) or 1,9-dimethylmethylene blue (DMMB). The VSV was more sensitive to inactivation by 660 nm light with 1 microM DMMB than with the same concentration of MB. Under conditions that inactivated 6 log10 of VSV, the methemoglobin content (Met-Hb[%]) and P50 of hemoglobin were changed by 1 microM MB phototreatment but were not changed by 1 microM DMMB phototreatment. The migration of hemoglobin during electrophoresis and the activity of superoxide dismutase were not changed by MB or DMMB phototreatment. In contrast to the results obtained with DMMB at 660 nm, 580 nm irradiation of SFH with DMMB resulted in a significant increase of Met-Hb(%) under conditions that only inactivated 1.19 log10 VSV. The 580 nm irradiation primarily activates the dimer and higher-order aggregates of the dyes, while 660 nm irradiation primarily activates the monomer. These results indicate that the monomer form of DMMB can effectively inactivate viruses without damage to SFH.  相似文献   

20.
Abstract Monochromatic 334-nm radiation delivered under aerobic conditions inactivates the genetic activity (ability to transform auxotrophic recipient cells to nutritional prototrophy) of isolated transforming Bacillus subtilis DNA. The presence of superoxide dismutase (SOD), catalase, and mannitol reduces the 334-nm inactivation. The rate of inactivation of the genetic activity by 334-nm radiation is enhanced fivefold by the sensitizer 2-thiouracil (s2Ura). This enhancement is substantially reversed when the irradiations are performed in the presence of mannitol, and, to a lesser extent, SOD. Catalase slightly reduces the s2Ura enhancement of 334-nm inactivation of transforming activity. Backbone breaks induced in the same DNA by aerobic 334-nm radiation were also enhanced markedly by the presence of s2Ura; this enhancement was reversed by the presence of mannitol and, to a lesser extent, SOD during irradiation. Catalase had no effect upon s2Ura-enhanced, 334-nm-induced SSBs. Whereas DNA breakage may be responsible for a portion of the inactivation of the DNA by the photosensitized reaction between s2-Ura and 334-nm radiation, it is not the only inactivating lesion, because the yield of SSBs per lethal hit per unit length of DNA is not constant for all the irradiation conditions studied. The results support a complex role for active oxygen species in inactivation of transforming activity and DNA breakage by s2Ura-enhanced 334-nm radiation. They are also consistent with the formation of superoxide anion, hydroxyl radical, and possibly also singlet molecular oxygen, generated from ground-state molecular oxygen by reactive s2Ura in both Type I and II reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号