首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
An experimental and numerical study was made of converging cylindrical shock waves. The goal of the present study was to clarify the movement and instability of the converging cylindrical shock waves. Experiments were conducted in an annular shock tube of 230 mm o.d. and 210 mm i.d. connected to a cylindrical test section of 210 mm diameter. Double exposure holographic interferometry was used to visualize the converging cylindrical shock waves. Incident shock Mach numbers ranged between 1.1 and 2.0 in air. A numerical simulation was conducted using the TVD finite difference scheme. It was found in the experiments that although the initial shock wave configuration looked cylindrical, it was gradually deformed with propagation towards the center and finally showed mode-four instability. This is attributable to the existence of initial disturbances which were introduced by the struts which supported the inner tube of the annular shock tube. This trend was significant for stronger shock waves indicating that at the last stage of shock wave convergence the initial perturbations of the converging cylindrical shock wave were amplified to form the triple point of Mach reflection. The numerical results correctly predicted the experimental trend.This article was processed using Springer-Verlag TEX Shock Waves macro package 1990.  相似文献   

2.
The paper reports results of experiments regarding toroidal shock wave focusing in a vertical shock tube as a part of a series of converging shock wave studies. This compact vertical shock tube was designed to achieve a high degree of reproducibility with minimum shock formation distance by adopting a diaphragmless operating system. The shock tube was manufactured in the Institute of Fluid Science, Tohoku University. An aspheric lens shaped cylindrical test section was connected at the open end of the shock tube to visualize the diffraction and focusing of the toroidal shock wave released from the ring shaped shock tube opening. Pressure transducers were flush mounted on the shock tube’s test section to measure pressure histories at the converging test section. Double exposure holographic interferometry was employed to quantitatively visualize the shock waves. The whole sequence of toroidal shock wave diffraction, focusing, and its reflection from the symmetrical axis were successfully studied. The transition of reflected shock waves was observed.  相似文献   

3.
The influence of artificial disturbances on the behavior of strong converging cylindrical shocks is investigated experimentally and numerically. Ring-shaped shocks, generated in an annular cross sectional shock tube are transformed to converging cylindrical shocks in a thin cylindrical test section, mounted at the rear end of the shock tube. The converging cylindrical shocks are perturbed by small cylinders placed at different locations and in various patterns in the test section. Their influence on the shock convergence and reflection process is investigated. It is found that disturbances arranged in a symmetrical pattern will produce a symmetrical deformation of the converging shockfront. For example, a square formation produces a square-like shock and an octagon formation a shock with an octagonal front. This introduces an alternative way of tailoring the form of a converging shock, instead of using a specific form of a reflector boundary. The influence of disturbances arranged in non-symmetric patterns on the shape of the shockfront is also investigated.   相似文献   

4.
采用高速纹影法实验研究了柱形汇聚激波与球形重气体界面相互作用的 Richtmyer-Meshkov不稳定性问题. 激波管实验段基于激波动力学理论设计, 将马赫数为1.2 的平面激波转化为柱形汇聚激波, 气体界面由肥皂膜分隔六氟化硫(内)和空气(外)得到. 采用高速摄影机在单次实验中拍摄激波运动的全过程, 对柱形激波的形成进行了实验验证, 并进一步观测了汇聚激波与球形气体界面相互作用过程中的波系发展和气体界面变形以及反射激波同已变形界面二次作用的流场演化. 结果表明: 当柱形汇聚激波穿过气泡界面以后, 气泡左侧界面极点沿激波传播方向保持匀速运动, 气泡右侧界面发展成为射流结构, 气泡主体发展成为涡环结构; 在反射激波的二次作用下, 流场中无序运动显著增强并很快进入湍流混合阶段.  相似文献   

5.
在Richtmyer-Meshkov(RM)不稳定性实验研究中,形成两种不同密度流体的初始扰动界面是前提和关健.本文提出了一种流动肥皂膜气体界面生成方法,其工作原理是由细丝构成的导流框从激波管实验段穿过,肥皂液从导流框的上端注入并在重力作用下在导流框中形成流动肥皂膜,膜的两测可以分别充入不同密度的气体从而形成稳定的气体...  相似文献   

6.
界面不稳定性, 特别是Richtmyer–Meshkov (RM) 不稳定性, 是流体
力学中一项重要的研究内容, 无论在学术研究领域还是工程应用领域都有着
重要的研究价值和应用背景. RM 不稳定性问题自提出以来, 得到了学术界
广泛的关注, 其研究无论是在实验方法、数值模拟还是在理论分析方面都取
得了很大的进展. 在激波管中开展激波与界面相互作用的实验研究, 即研究
界面初始扰动在激波诱导下的演化规律, 是目前研究RM 不稳定性的重要手
段. RM 不稳定性实验研究包括3 个部分, 分别是激波的产生、界面的形成
以及流场的观测. 综述了RM 不稳定性的实验研究进展, 并针对目前研究的
局限性提出了RM 不稳定性今后实验研究的重点和方向: 汇聚激波作用下界
面不稳定性的发展规律; 激波冲击下多种形状及大振幅界面的演化机理; 三
维界面的RM 不稳定性发展规律; 可压缩湍流的形成与混合机理.   相似文献   

7.
The onset of Mach reflection or regular reflection at the vertices of a converging polygonal shock wave was investigated experimentally in a horizontal annular shock tube. The converging shock waves were visualized by schlieren optics. Two different types of polygonal shock convergence patterns were observed. We compared the behavior during the focusing process for triangular and square-shaped shocks. It is shown that once a triangular shaped shock is formed, the corners in the converging shock will undergo regular reflection and consequently the shape will remain unaltered during the focusing process. A square-shaped shock suffers Mach reflections at the corners and hence a reconfiguring process takes place; the converging shock wave alternates between a square and an octagon formation during the focusing process.   相似文献   

8.
A shock wave implosion in an axisymmetric chamber with a convex bounding wall is studied experimentally, analytically and numerically. The converging shock front area in this geometry shrinks quickly as the shock wave approaches the center point. The analytical theory predicts that the corresponding rate of post-shock pressure and density increase in this case exceeds essentially that achieved in the classical cylindrical or spherical shock implosions, hence, the phenomenon is referred to as “super-spherical cumulation”. The experiments confirm higher intensity of the super-spherical implosion compared with the cylindrical one, both driven by identical high-current pulsed electric discharges. The converging shock stability is analyzed in the framework of the CCW theory. The numerical results obtained using a locally-adaptive unstructured grid technique agree well with the theoretical predictions of the converging shock wave intensity. Received 28 January 1998 / Accepted 6 November 1998  相似文献   

9.
圆柱形汇聚激波诱导 Richtmyer-Meshkov不稳定的 SPH 模拟   总被引:3,自引:3,他引:0  
徐建于  黄生洪 《力学学报》2019,51(4):998-1011
汇聚激波诱导不同物质界面的Richtmyer-Meshkov(RM)不稳定现象在惯性约束核聚变领域有重要的学术意义和工程背景.基于网格离散的宏观流体力学方法由于数值扩散问题往往需要高阶精度算法才能准确追踪界面演化,且对大变形和破碎合并等复杂界面追踪也极为困难.光滑粒子流体动力学(smoothed particlehydrodynamics,SPH)方法采用纯拉格朗日算法,可以有效克服上述难点.但经典SPH算法需采用人工黏性处理强间断,在激波间断处往往会出现严重的非物理振荡,对于涉及强冲击不稳定性问题,很难达到理想的模拟效果.本文采用基于HLL黎曼求解器的SPH算法,实现了对强激波和大密度比物质界面的有效分辨和追踪.一维数值校核证明了代码的可靠性、健壮性,并进一步模拟了二维圆柱形汇聚冲击波冲击四边形轻/重气界面诱导的RM不稳定性问题,与已有实验结果进行了对比,发现模拟结果与实验结果吻合.通过分析界面演化过程中的密度及压力变化,发现本文所采用的方法可准确地追踪激波与界面作用的复杂界面和波系演化规律.研究结果为进一步理解和解释汇聚冲击条件下的RM不稳定性机理奠定了基础.   相似文献   

10.
The effect of cylindrical obstacles and the porosity in between them along the path of a converging cylindrical shock is studied through numerical simulations. An initially cylindrical converging shock wave is perturbed by cylindrical obstacles placed radially in its path. High pressures and temperatures are achieved as the shock wave is focused. Results show that the shape of the shock wave close to the point of convergence as well as the porosity and type of shock wave reflection the converging shock undergoes influence the peak values. Various configurations of the obstacle size and number are considered. The Guderley constant for each case is compared with previous reported experimental values.  相似文献   

11.
Focusing of strong shock waves in a gas-filled thin convergence chamber with various forms of the reflector boundary is investigated experimentally and numerically. The convergence chamber is mounted at the end of the horizontal co-axial shock tube. The construction of the convergence chamber allows the assembly of the outer chamber boundaries of various shapes. Boundaries with three different shapes have been used in the present investigation—a circle, an octagon and a smooth pentagon. The shock tube in the current study was able to produce annular shocks with the initial Mach number in the range M s = 2.3 − 3.6. The influence of the shape of the boundary on the shape and properties of the converging and reflected shock waves in the chamber has then been investigated both experimentally and numerically. It was found that the form of the converging shock is initially governed by the shape of the reflector and the nonlinear interaction between the shape of the shock and velocity of shock propagation. Very close to the center of convergence the shock obtains a square-like form in case of a circular and octagonal reflector boundary. This is believed to stem from the instability of the converging shock front triggered by the disturbances in the flow field. The outgoing, reflected shocks were also observed to be influenced by the shape of the boundary through the flow ahead as created by the converging shocks.  相似文献   

12.
In this paper, focusing of a toroidal shock wave propagating from an annular shock tube into a cylindrical chamber was investigated numerically with the dispersion controlled dissipation (DCD) scheme. The first case for an incident Mach number of 1.5 was conducted and compared with experiments for validation. Then, several cases were calculated for higher incident Mach numbers varying from 2.0 to 5.0, and complicated flow structures were observed. The numerical study was mainly focused on two aspects: focusing process and flow structures. The process, including diffraction, focusing, and reflection, is displayed to reveal the focusing mechanism, and the flow structures at different incident. Mach numbers are used to demonstrate shock reflection styles and focusing characteristics. PACS 47.40.Ki; 47.40.Nm; 52.35.Tc  相似文献   

13.
M. Sun  K. Takayama 《Shock Waves》1996,6(6):323-336
A holographic interferometric study was made of the focusing of reflected shock waves from a circular reflector. A diaphragmless shock tube was used for incident shock Mach numbers ranging from 1.03 to 1.74. Hence, the process of reflected shock wave focusing was quantitatively observed. It is found that a converging shock wave along the curved wall undergoes an unsteady evolution of mach reflection and its focusing is, therefore, subject to the evolution of the process of shock wave reflections. The collision of triple points terminates the focusing process at the geometrical focus. In order to interprete quantitatively these interferograms, a numerical simulation using an Eulerian solver combined with adaptive unstructured grids was carried out. It is found numerically that the highest density appears immediately after the triple point collision. This implies that the final stage of focusing is mainly determined by the interaction between shock waves and vortices. The interaction of finite strength shock waves, hence, prevents a curved shock wave from creating the infinite increase of density or pressure at a focal point which is otherwise predicted by the linear acoustic theory.  相似文献   

14.
In this article the formation and propagation of blast wave as a result of a focusing of shock wave in a domain with low pressure and density are examined in the frame of an ideal gas model. We consider the decomposition of a pressure-density discontinuity on the boundary of the spherical (or cylindrical) domain which is filled by a gas whose pressure and density are lower than the pressure and density of gas that filling the external space. At initial moments of this decomposition the rarefaction wave propagates in the external space and the converging shock wave is formed in the domain of low pressure and density. The intensity of the converging shock wave gradually increases, and the wave transitions to the self-similar regime. After implosion, a diverging shock wave is formed which propagates through the disturbed gas. The values of wave intensity, wave impulse and other parameters for some magnitudes of initial parameters have been determined by means of numerical calculations. Received 10 August 1997 / Accepted 13 July 1998  相似文献   

15.
We present the results of an experimental study of the reflection of a plane stationary shock wave with Mach number in the range 1.21–1.35 from a rigid cylindrical concave wall. The experiments were carried out in a shock tube. In experimental shock tube technology the reflection of a shock wave from a rigid wall is often used for obtaining high temperatures [1]. This circumstance is associated with the fact that the temperature behind the reflected wave is significantly higher than that behind the incident wave.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 33–39, July–August, 1970.  相似文献   

16.
Full field particle image velocimetry (PIV) measurements are obtained for the first time in Richtmyer–Meshkov instability shock tube experiments. The experiments are carried out in a vertical shock tube in which the light gas (air) and the heavy gas (SF6) flow from opposite ends of the shock tube driven section and exit through narrow slots at the interface location. A sinusoidal perturbation is given to the interface by oscillating the shock tube in the horizontal direction. Richtmyer–Meshkov instability is then produced by the interaction with a weak shock wave (M s  = 1.21). PIV measurements are obtained by seeding the flow with 0.30 μm polystyrene Latex spheres which are illuminated using a double-pulsed Nd:YAG laser. PIV measurements indicate the vorticity to be distributed in a sheet-like distribution on the interface immediately after shock interaction and that this distribution quickly rolls up into compact vortices. The integration of the vorticity distribution over one half wave length shows the circulation to increase with time in qualitative agreement with the numerical study of Peng et al. (Phys. Fluids, 15, 3730–3744, 2003).  相似文献   

17.
Interaction of a shock with a sphere suspended in a vertical shock tube   总被引:1,自引:0,他引:1  
Shock wave interaction with a sphere is one of the benchmark tests in shock dynamics. However, unlike wind tunnel experiments, unsteady drag force on a sphere installed in a shock tube have not been measured quantitatively. This paper presents an experimental and numerical study of the unsteady drag force acting on a 80 mm diameter sphere which was vertically suspended in a 300 mm x 300 mm vertical shock tube and loaded with a planar shock wave of M s = 1.22 in air. The drag force history on the sphere was measured by an accelerometer installed in it. Accelerometer output signals were subjected to deconvolution data processing, producing a drag history comparable to that obtained by solving numerically the Navier-Stokes equations. A good agreement was obtained between the measured and computed drag force histories. In order to interpret the interaction of shock wave over the sphere, high speed video recordings and double exposure holographic interferometric observations were also conducted. It was found that the maximum drag force appeared not at the time instant when the shock arrived at the equator of the sphere, but at some earlier time before the transition of the reflected shock wave from regular to Mach reflection took place. A negative value of the drag force was observed, even though for a very short duration of time, when the Mach stem of the transmitted shock wave relfected and focused at the rear stagnation point of the sphere.Received: 31 March 2003, Accepted: 7 July 2003, Published online: 2 September 2003  相似文献   

18.
An investigation was made of the reflection of planar shock waves from cones. 86 cones, the half apex angle of which varied from 10° to 52° at every 0.5°, were installed in a 60 mm×150 mm diaphragmless shock tube equipped with holographic interferometry. The diaphragmless shock tube had a high degree of reproducibility with which the scatter of shock wave Mach number was within ±0.25% for shock wave Mach number ranging from 1.16 to approximately 2.0. The reflection of shock waves over cones was visualized using double exposure holographic interferometry. Whitham's geometrical shock wave dynamics was used to analyse the motion of Mach stems over cones. It is found that for relatively smaller apex angles of cones trajectory angles of resulting irregular reflections coincide with the so-called glancing incidence angles and their Mach stems appear to be continuously curved from its intersection point with the incident shock wave, which shows the chractericstic of von Neumann reflection. The domain of the existence of the von Neumann reflection was analytically obtained and was found to be broadened much more widely than that of two-dimensional reflections of shock waves over wedges.  相似文献   

19.
T. Si  Z. Zhai  X. Luo  J. Yang 《Shock Waves》2014,24(1):3-9
The Richtmyer–Meshkov instability behavior of a heavy-gas $(\text{ SF }_6)$ cylinder accelerated by a cylindrical converging shock wave is studied experimentally. A curved wall profile is well-designed based on the shock dynamics theory [Phys. Fluids, 22: 041701 (2010)] with an incident planar shock Mach number of 1.2 and a converging angle of $15^\circ $ in a $95\,\text{ mm }\times 95$ mm square cross-section shock tube. The $\text{ SF }_6$ cylinder mixed with the glycol droplets flows vertically through the test section and is illuminated horizontally by a laser sheet. The images obtained only one per run by an ICCD (intensified charge coupled device) combined with a pulsed Nd:YAG laser are first presented and the complete evolution process of the $\text{ SF }_6$ cylinder is then captured in a single test shot by a high-speed video camera combined with a high-power continuous laser. In this way, both the developments of the first counter-rotating vortex pair and the second counter-rotating vortex pair with an opposite rotating direction from the first one are observed. The experimental results indicate that the phenomena induced by the converging shock wave and the reflected shock formed from the center of convergence are distinct from those found in the planar shock case.  相似文献   

20.
Shock tubes have been extensively used in the study of blast traumatic brain injury due to increased incidence of blast-induced neurotrauma in Iraq and Afghanistan conflicts. One of the important aspects in these studies is how to best replicate the field conditions in the laboratory which relies on reproducing blast wave profiles. Evolution of the blast wave profiles along the length of the compression-driven air shock tube is studied using experiments and numerical simulations with emphasis on the shape and magnitude of pressure time profiles. In order to measure dynamic pressures of the blast, a series of sensors are mounted on a cylindrical specimen normal to the flow direction. Our results indicate that the blast wave loading is significantly different for locations inside and outside of the shock tube. Pressure profiles inside the shock tube follow the Friedlander waveform fairly well. Upon approaching exit of the shock tube, an expansion wave released from the shock tube edges significantly degrades the pressure profiles. For tests outside the shock tube, peak pressure and total impulse reduce drastically as we move away from the exit and majority of loading is in the form of subsonic jet wind. In addition, the planarity of the blast wave degrades as blast wave evolves three dimensionally. Numerical results visually and quantitatively confirm the presence of vortices, jet wind and three-dimensional expansion of the planar blast wave near the exit. Pressure profiles at 90° orientation show flow separation. When cylinder is placed inside, this flow separation is not sustained, but when placed outside the shock tube this flow separation is sustained which causes tensile loading on the sides of the cylinder. Friedlander waves formed due to field explosives in the intermediate-to far-field ranges are replicated in a narrow test region located deep inside the shock tube.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号