首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
We propose a piecewise-linear, time-stepping discontinuous Galerkin method to solve numerically a time fractional diffusion equation involving Caputo derivative of order μ ∈ (0, 1) with variable coefficients. For the spatial discretization, we apply the standard continuous Galerkin method of total degree ≤ 1 on each spatial mesh elements. Well-posedness of the fully discrete scheme and error analysis will be shown. For a time interval (0, T) and a spatial domain Ω, our analysis suggest that the error in \(L^{2}\left ((0,T),L^{2}({\Omega })\right )\)-norm is \(O(k^{2-\frac {\mu }{2}}+h^{2})\) (that is, short by order \(\frac {\mu }{2}\) from being optimal in time) where k denotes the maximum time step, and h is the maximum diameter of the elements of the (quasi-uniform) spatial mesh. However, our numerical experiments indicate optimal O(k2 + h2) error bound in the stronger \(L^{\infty }\left ((0,T),L^{2}({\Omega })\right )\)-norm. Variable time steps are used to compensate the singularity of the continuous solution near t = 0.  相似文献   

5.
In this research, numerical approximation to fractional Bagley-Torvik equation as an important model arising in fluid mechanics is investigated. Our discretization algorithm is based on the local discontinuous Galerkin (LDG) schemes along with using the natural upwind fluxes, which enables us to solve the model problem element by element. This means that we require to solve a low-order system of equations in each subinterval, hence avoiding the need for a full global solution. The proposed schemes are tested on a range of initial- and boundary-value problems including a variable coefficient example, a nonsmooth problem, and some oscillatory test cases with exact solutions. Also, the validation of the proposed methods was compared with those obtained available existing computational procedures. Overall, it was found that LDG methods indicated highly satisfactory performance with comparatively lower degree of polynomials and number of elements compared with other numerical models.  相似文献   

6.
In this paper, a piecewise constant time-stepping discontinuous Galerkin method combined with a piecewise linear finite element method is applied to solve control constrained optimal control problem governed by time fractional diffusion equation. The control variable is approximated by variational discretization approach. The discrete first-order optimality condition is derived based on the first discretize then optimize approach. We demonstrate the commutativity of discretization and optimization for the time-stepping discontinuous Galerkin discretization. Since the state variable and the adjoint state variable in general have weak singularity near t =?0and t = T, a time adaptive algorithm is developed based on step doubling technique, which can be used to guide the time mesh refinement. Numerical examples are given to illustrate the theoretical findings.  相似文献   

7.
In this paper, we first present a new finite difference scheme to approximate the time fractional derivatives, which is defined in the sense of Caputo, and give a semidiscrete scheme in time with the truncation error O((Δt)3?α ), where Δt is the time step size. Then a fully discrete scheme based on the semidiscrete scheme for the fractional Cattaneo equation in which the space direction is approximated by a local discontinuous Galerkin method is presented and analyzed. We prove that the method is unconditionally stable and convergent with order O(h k+1 + (Δt)3?α ), where k is the degree of piecewise polynomial. Numerical examples are also given to confirm the theoretical analysis.  相似文献   

8.
We propose and study discontinuous Galerkin methods for strongly degenerate convection-diffusion equations perturbed by a fractional diffusion (Lévy) operator. We prove various stability estimates along with convergence results toward properly defined (entropy) solutions of linear and nonlinear equations. Finally, the qualitative behavior of solutions of such equations are illustrated through numerical experiments.  相似文献   

9.
The Cahn-Hilliard equation is modeled to describe the dynamics of phase separation in glass and polymer systems. A priori error estimates for the Cahn-Hilliard equation have been studied by the authors. In order to control accuracy of approximate solutions, a posteriori error estimation of the Cahn-Hilliard equation is obtained by discontinuous Galerkin method.  相似文献   

10.
A priori error estimates for the Rosenau equation, which is a K-dV like Rosenau equation modelled to describe the dynamics of dense discrete systems, have been studied by one of the authors. But since a priori error bounds contain the unknown solution and its derivatives, it is not effective to control error bounds with only a given step size. Thus we need to estimate a posteriori errors in order to control accuracy of approximate solutions using variable step sizes. A posteriori error estimates of the Rosenau equation are obtained by a discontinuous Galerkin method and the stability analysis is discussed for the dual problem. Numerical results on a posteriori error and wave propagation are given, which are obtained by using various spatial and temporal meshes controlled automatically by a posteriori error.  相似文献   

11.
In this paper, a fully discrete local discontinuous Galerkin method for a class of multi-term time fractional diffusion equations is proposed and analyzed. Using local discontinuous Galerkin method in spatial direction and classical L1 approximation in temporal direction, a fully discrete scheme is established. By choosing the numerical flux carefully, we prove that the method is unconditionally stable and convergent with order O(h k+1 + (Δt)2?α ), where k, h, and Δt are the degree of piecewise polynomial, the space, and time step sizes, respectively. Numerical examples are carried out to illustrate the effectiveness of the numerical scheme.  相似文献   

12.
We employ a piecewise-constant, discontinuous Galerkin method for the time discretization of a sub-diffusion equation. Denoting the maximum time step by k, we prove an a priori error bound of order k under realistic assumptions on the regularity of the solution. We also show that a spatial discretization using continuous, piecewise-linear finite elements leads to an additional error term of order h 2 max (1,logk  − 1). Some simple numerical examples illustrate this convergence behaviour in practice. We thank the University of New South Wales for financial support provided by a Faculty Research Grant.  相似文献   

13.
14.
In this work, an effective and fast finite element numerical method with high-order accuracy is discussed for solving a nonlinear time fractional diffusion equation. A two-level linearized finite element scheme is constructed and a temporal–spatial error splitting argument is established to split the error into two parts, that is, the temporal error and the spatial error. Based on the regularity of the time discrete system, the temporal error estimate is derived. Using the property of the Ritz projection operator, the spatial error is deduced. Unconditional superclose result in H1-norm is obtained, with no additional regularity assumption about the exact solution of the problem considered. Then the global superconvergence error estimate is obtained through the interpolated postprocessing technique. In order to reduce storage and computation time, a fast finite element method evaluation scheme for solving the nonlinear time fractional diffusion equation is developed. To confirm the theoretical error analysis, some numerical results are provided.  相似文献   

15.
16.
In this article, an implicit fully discrete local discontinuous Galerkin (LDG) finite element method, on the basis of finite difference method in time and LDG method in space, is applied to solve the time‐fractional Kawahara equation, which is introduced by replacing the integer‐order time derivatives with fractional derivatives. We prove that our scheme is unconditional stable and convergent through analysis. Extensive numerical results are provided to demonstrate the performance of the present method. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

17.
In this paper, we consider the numerical approximation for the fractional diffusion-wave equation. The main purpose of this paper is to solve and analyze this problem by introducing an implicit fully discrete local discontinuous Galerkin method. The method is based on a finite difference scheme in time and local discontinuous Galerkin methods in space. By choosing the numerical fluxes carefully we prove that our scheme is unconditionally stable and get L 2 error estimates of \(O(h^{k+1}+(\Delta t)^{2}+(\Delta t)^{\frac {\alpha }{2}}h^{k+1})\) . Finally numerical examples are performed to illustrate the efficiency and the accuracy of the method.  相似文献   

18.
Wang  Ying  Liu  Fawang  Mei  Liquan  Anh  Vo V. 《Numerical Algorithms》2021,86(4):1443-1474
Numerical Algorithms - In this paper, we develop an efficient spectral Galerkin method for the three-dimensional (3D) multi-term time-space fractional diffusion equation. Based on the L2-1σ...  相似文献   

19.
This article proves the existence and uniqueness of the solution obtained by the hybridizable discontinuous Galerkin (HDG) method of the fractional Volterra‐Fredholm integro differential equation. The method based on local solvers and transmission condition is applied to the equation using two auxiliary variables. The form of the equation is amenable for achieving the solvability criteria of the problem according to the HDG method. We also calculate a numerical solution of the problem whose exact solution is taken as a smooth or fractional function. This results in a tridiagonal, symmetric, and positive definite stiffness matrix.  相似文献   

20.
This work is concerned with the extension of the Jacobi spectral Galerkin method to a class of nonlinear fractional pantograph differential equations. First, the fractional differential equation is converted to a nonlinear Volterra integral equation with weakly singular kernel. Second, we analyze the existence and uniqueness of solutions for the obtained integral equation. Then, the Galerkin method is used for solving the equivalent integral equation. The error estimates for the proposed method are also investigated. Finally, illustrative examples are presented to confirm our theoretical analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号