首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Donor–bridge–acceptor (D-B-A) systems, either as supermolecules or on surfaces, have been extensively studied with respect to long-range electron (ET) and excitation energy (EET) transfer. In more recent years, the main research objective has been to develop knowledge on how to construct molecular-based devices, with predetermined electron transfer properties, intended for application in electronics and photovoltaics. At present, such construction is in general hampered for several reasons. Most importantly, the property of a D-B-A system is not a simple linear combination of properties of the individual components, but depends on the specific building blocks and how they are assembled. An important example is the ability of the bridge to support the intended transfer process. The mediation of the transfer is characterized by an attenuation factor, β, often viewed as a bridge specific constant but which also depends on the donor and the acceptor, i.e. the same bridge can either be poorly or strongly conducting depending on the donor and acceptor. This review gives an account of the experimental exploration of the attenuation factor β in a series of bis(porphyrin) systems covalently linked by bridges of the oligo(phenyleneethynylene) (OPE) type. Attenuation factors for ET as well as for both singlet and triplet EET are discussed. A report is also given on the dependence of the transfer efficiency on the energy-gap between the donor and bridge states relevant for the specific transfer process. The experimental variation of β with varying donor and acceptor components is shown for a range of conjugated bridges by representative examples from the literature. The theoretical rationalization for the observed variation is briefly discussed. Based on the Gamow tunneling model, the observed variations in β-values with varying donors and acceptors for the same bridges is simulated successfully simultaneously as the observed energy-gap dependence is modelled.  相似文献   

2.
Derivatives of N-pyrrolobenzene with a para-donor and a para-acceptor substituent on the benzene ring are compared. It is shown that by a suitable increase of the donor strength of the pyrrolo group, CT fluorescence can be achieved even for donor–donor-substituted benzenes. The ICT emission for sterically hindered compounds is more forbidden than that of unhindered phenyl pyrroles. This suggests conformational effects which induce a narrower twist angle distribution around a perpendicular minimum in the excited state.  相似文献   

3.
Zhang  Wenjun  Li  Jinglin  Wang  Yuan  Zhang  Xiaoxiong  Fu  Jie 《Research on Chemical Intermediates》2019,45(5):2515-2527

Highly transparent ultrathin films (UTFs) were fabricated via layer-by-layer assembly of 110-Phenanthroline monohydrate (Phen)–8-hydroxyquinoline (Hq)–Al3+(Phen–Hq–Al), polyvinyl alchol(PVA) and Mg–Al-layered double hydroxide (LDH)nanosheets. UV–visible absorption and fluorescence spectroscopy showed regular growth of UTFs increasing the numbers of assembly. The structure and morphology of Mg–Al-layered double hydroxide and UTFs were measured by Fourier transform infrared spectroscopy, XRD and SEM. We found that it can detect Fe3+ ion with relative selectivity and high sensitivity (Ksv?=?2.214?×?104 M?1) which indicates that UTFs can be a potential fluorescent probe for selectively of the Fe3+ ion.

  相似文献   

4.
5.
This paper describes the preparation and characterization of glass films consisting of SiO2, Li2O, Na2O, K2O or MgO in varying compositions on stainless steel and aluminum substrates by sol–gel method. Silver phosphate or silver incorporated zeolite was also introduced into the sols for obtaining antibacterial effect. The SiO2/Li2O/Na2O system having the composition of 85:5:10 wt% was found as the optimum for obtaining a stable sol and film formation. The films were investigated by scanning electron microscopy (SEM) and electron dispersive analysis by X-ray (EDX), Fourier transformed infrared (FTIR) spectroscopy, thermo-gravimetric analysis (TGA) and differential thermal analysis (DTA). Homogenous films having 300 ± 20 nm thicknesses were formed by spin coating and then by curing at 500 °C for 1 h. Obtained films had high adherence to the metal substrates and they were also durable in acidic, basic or NaCl environments. They also presented a powerful antibacterial effect against E. coli.  相似文献   

6.
The present paper describes an unconventional approach to fabricate the superhydrophilic–superhydrophobic micropatterns on the TiO2 nanotube structured film by photocatalytic lithography with a two-step process. At the first step, the superhydrophobic TiO2 nanotube film is fabricated through electrochemical and self-assembled techniques. And at the second step, the superhydrophobic film is selectively exposed to UV light through a photomask to locally photocatalyse the organic monolayer assembled on the TiO2 nanotube surface. The superhydrophilic–superhydrophobic micropatterns have thus been developed, as a novel template to fabricate a define micropatterned coating of nano octacalcium phosphate by electrochemical deposition. It is indicated that these combined processes reveal a very promising approach for constructing well-defined micropatterns of various functional materials.  相似文献   

7.
8.
Russian Chemical Bulletin - The efficiency of the Förster resonance energy transfer (FRET) in a monolayer film containing the energy donor and energy acceptor fluorophores is low since the...  相似文献   

9.
A new set of [Cu(phen)2]+ based rotaxanes, featuring [60]-fullerene as an electron acceptor and a variety of electron donating moieties, namely zinc porphyrin (ZnP), zinc phthalocyanine (ZnPc) and ferrocene (Fc), has been synthesized and fully characterized with respect to electrochemical and photophysical properties. The assembly of the rotaxanes has been achieved using a slight variation of our previously reported synthetic strategy that combines the Cu(i)-catalyzed azide–alkyne cycloaddition reaction (the “click” or CuAAC reaction) with Sauvage''s metal-template protocol. To underline our results, complementary model rotaxanes and catenanes have been prepared using the same strategy and their electrochemistry and photo-induced processes have been investigated. Insights into excited state interactions have been afforded from steady state and time resolved emission spectroscopy as well as transient absorption spectroscopy. It has been found that photo-excitation of the present rotaxanes triggers a cascade of multi-step energy and electron transfer events that ultimately leads to remarkably long-lived charge separated states featuring one-electron reduced C60 radical anion (C60˙) and either one-electron oxidized porphyrin (ZnP˙+) or one-electron oxidized ferrocene (Fc˙+) with lifetimes up to 61 microseconds. In addition, shorter-lived charge separated states involving one-electron oxidized copper complexes ([Cu(phen)2]2+ (τ < 100 ns)), one-electron oxidized zinc phthalocyanine (ZnPc˙+; τ = 380–560 ns), or ZnP˙+ (τ = 2.3–8.4 μs), and C60˙ have been identified as intermediates during the sequence. Detailed energy diagrams illustrate the sequence and rate constants of the photophysical events occurring with the mechanically-linked chromophores. This work pioneers the exploration of mechanically-linked systems as platforms to position three distinct chromophores, which are able to absorb light over a very wide range of the visible region, triggering a cascade of short-range energy and electron transfer processes to afford long-lived charge separated states.  相似文献   

10.
11.
Redox-active ferrocene was assembled on gold surfaces through the hydrogen bonding interactions between adenine-substituted ferrocene and a uracil-terminated organothiol monolayer. The surface coverage of ferrocene Γ could be varied from ca. 4 × 10? 11 to 2.0 × 10? 10 mol cm? 2 by diluting the thiol-modified uracil derivative with inert 1-octanethiol. A decrease in the apparent electron transfer rate constant for ferrocene, kapp, from ca. 50 to 10 s? 1 was observed upon increasing Γ.  相似文献   

12.
Al–B–NiO thin films were prepared using the sol–gel process and deposited on Indium tin oxide (ITO)-coated glass substrates via the dip-coating technique for the purpose of developing high performance electrochromic materials. The influence of the anneal on the structural and electrochromic properties of Al–B–NiO films is reported. Thermogravimetry (TG) and differential thermal analysis (DTA), cyclic voltammetry measurements (CV), UV spectrophotometer, atomic force microscopy (AFM) and X-ray diffraction (XRD) have been used to investigate the structural and electrochromic properties. The thickness of the films was determined by spectrophotometric analysis in 350–1,000 nm wavelength. Results showed that the Al–B–NiO thin films treated at high temperature have both the excellent electrochromic properties and good reversibility. The transmittance change (ΔT) of the film treated at 500 °C reaches still ~50% at the wavelength of 550 nm. The microstructure and the surface morphology were considered to play an important role in the electrochromic properties with different temperatures.  相似文献   

13.
The electrocatalytic activity of several types of polypyrrole films bearing cationic pendant group [tris(bipyridyl)ruthenium(II) complexes, viologen, ammonium] and containing dispersed microparticles of RuO2 towards the oxidation of alcohols to aldehydes or ketones has been investigated. Best results are obtained with polypyrrole films substituted by a tris(bipyridyl)ruthenium(II) complex, the latter acting as an electron relay for the electrogeneration of the strong oxidizing species RuO42−. The influence of several parameters such as base, supporting electrolyte, electrolysis potential and catalyst amount on the efficiency of the electrocatalysis has been examined. Under optimum conditions a maximum turnover of 10 900 was reached. In all cases the lifetime of these electrode materials was limited by the slow release of the RuO42− species.  相似文献   

14.
15.
A numerically exact approach, named as the hierarchical stochastic Schrödinger equation, is employed to investigate the resonant vibration-assisted excitation energy transfer in a dimer system, where an underdamped vibration with both diagonal and off-diagonal exciton–phonon interactions is incorporated. From a large parameter space over the site-energy difference, excitonic coupling, and reorganization energy, it is found that the promotion effect of the underdamped vibration is significant only when the excitonic coupling is smaller than the site-energy difference. Under the circumstance, there is an optimal strength ratio between diagonal and off-diagonal exciton–phonon interactions for the resonant vibration-assisted excitation energy transfer as the site-energy difference is greater than the reorganization energy, whereas in the opposite situation the most efficient energy transfer occurs as the exciton–phonon interaction is totally off-diagonal. © 2018 Wiley Periodicals, Inc.  相似文献   

16.
F?rster resonance energy transfer (FRET) is a powerful optical technique to determine intra-molecular distances. However, the dye rotational motion and the linker flexibility complicate the relationship between the measured energy transfer efficiency and the distance between the anchoring points of the dyes. In this study, we present a simple model that describes the linker and dye dynamics as diffusion on a sphere. Single-pair energy transfer was treated in the weak excitation limit, photon statistics and scaffold flexibility were ignored, and different time-averaging regimes were considered. Despite the approximations, our model provides new insights for experimental designs and results interpretation in single-molecule FRET. Monte Carlo simulations produced distributions of the inter-dye distance, the dipole orientation factor, κ(2), and the transfer efficiency, E, which were in perfect agreement with independently derived theoretical functions. Contrary to common perceptions, our data show that longer linkers will actually restrict the motion of dye dipoles and hence worsen the isotropic 2∕3 approximation of κ(2). It is also found that the thermal motions of the dye-linker system cause fast and large efficiency fluctuations, as shown by the simulated FRET time-trajectories binned on a microsecond time scale. A fundamental resolution limit of single-molecule FRET measurements emerges around 1-10 μs, which should be considered for the interpretation of data recorded on such fast time scales.  相似文献   

17.
Journal of Sol-Gel Science and Technology - Halloysite Nanotubes (HNTs) with large surface/volume ratio and rich reactive groups are incorporated into Fe-based MOF aerogel to develop MOF(Fe)/HNTs...  相似文献   

18.
In this work, we propose the preparation of a duplex anodic layer composed of both a thin (100 nm) and a thick film (10 μm) with Ni–YSZ material. The support of this anode is a metallic substrate, which is the interconnect of the SOFC unit cell. The metallic support limits the temperature of thermal treatment at 800 °C to keep a good interconnect mechanical behaviour and to reduce corrosion. We have chosen to elaborate anodic coatings by sol–gel route coupled with dip-coating process, which are low cost techniques and allow working with moderate temperatures. Thin films are obtained by dipping interconnect substrate into a sol, and thick films into an optimized slurry. After thermal treatment at only 800 °C, anodic coatings are adherent and homogeneous. Thin films have compact microstructures that confer ceramic protective barrier on metal surface. Further coatings of 10 μm thick are porous and constitute the active anodic material.  相似文献   

19.
Nanoporous crack free alumina thin films were fabricated in two phases gamma (??) and alpha (??) by sol?Cgel dip coating method. The thickness of the mesoporous films was increased with binder by varying its concentration, and with increasing the number of coating. The porosity, pore size, surface area and phase were controlled by sintering temperature. Interconnected pore structure of 8?C15?nm diameter were successfully prepared by repeating the deposition several times. FESEM, BET, AFM and XRD techniques were employed for the microstructural characterization.  相似文献   

20.
Niobium (Nb)-doped lead zirconate titanate (PZT) films have been prepared on platinized silicon substrates using a sol–gel method. The Zr/Ti ratios of the films are 53/47 and 40/60, and the Nb doping level ranges from 0 mol% to 3 mol%. Similar to the cases in bulk ceramics, after the doping with Nb, the remanent polarization Pr, effective transverse piezoelectric coefficients e31,c and pyroelectric coefficient p of the PZT films increase; but the longitudinal effective piezoelectric coefficient d33,c remains roughly unchanged. At the optimum Nb doping levels, the observed Pr, −e31,c and p reach a maximum value of 30 μC/cm2, 18 C/m2 and 350 μC/m2 K, respectively, for the PZT (53/47) films, and 37 μC/cm2, 7.9 c/m2 and 370 μC/m2 K for the PZT (40/60) films. Our results also reveal that there exist linear relations between p, e31,cr and Pr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号