首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present in this work a hierarchical approach for generating alternatives for production planning in a generic floor shop problem within the environment of Flexible Manufacturing Systems (hereafter, FMS). Briefly, the problem can be stated as follows: Given the resources of a FMS and the characteristics of the parts to be produced along a planning horizon, obtain the loading ordering of the parts in the FMS, the execution ordering of the operations and the processing route of each part (i.e., the working stations where each operation is to be executed), such that the production and transport costs are minimized and the modules workload is levelized. The problem is decomposed into three subproblems which are arranged in a hierarchy; a variety of models is presented, as well as the input/output relations that allow to integrate them; we also propose some algorithmic ideas to exploit the special structure of the problem. Computational experience is reported.  相似文献   

2.
We consider an integrated problem of plant location and capacity planning for components procurement in knockdown production systems. The problem is that of determining the schedule of opening components manufacturing plants, plans for acquisition of capacities in opened components manufacturing plants, and plans for components procurement in final assembly plants with the objective of minimizing the sum of fixed costs for opening plants, acquisition and operation costs of facilities, and delivery and subcontracting costs of components. The problem is formulated as a mixed integer linear program and solved by a two-stage solution procedure. In the solution procedure, the problem is decomposed into two tractable subproblems and these subproblems are solved sequentially. In the first stage, a dynamic plant location problem is solved using a cut and branch algorithm based on Gomory cuts, while a multiperiod capacity planning problem is solved in the second stage by a heuristic algorithm that uses a cut and branch algorithm and a variable reduction scheme. The solution procedure is tested on problems of a practical size and results show that the procedure gives reasonably good solutions.  相似文献   

3.
Summary This paper addresses the medium-term hydro-thermal coordination problem in an electric energy system. That is, the problem of finding the energy production of every power plant (hydro or thermal) in every subperiod of a given planning period, so that the customer load is supplied at minimum cost. The planning horizon is typically one to two months and the first week of this planning period is modeled in detail. The solution method proposed decomposes the problem in two subproblems corresponding to the hydro and thermal subsystems. These two subproblems are coordinated using a coordinating function for every subperiod. The coordinating function of a given subperiod expresses total production cost in that subperiod as a function of the total hydro production in that subperiod. The decomposition proposed makes it possible to use specialized algorithms to solve the hydro and thermal subproblems. This results in a very efficient computational procedure. From an experimental point of view the coordinating mechanism is robust. A case study is provided. It considers 61 thermal plants, a hydro system including 8 cascaded hydro plants and a 48 subperiods planning period.  相似文献   

4.
Trigeneration is a booming power production technology where three energy commodities are simultaneously produced in a single integrated process. Electric power, heat (e.g. hot water) and cooling (e.g. chilled water) are three typical energy commodities in the trigeneration system. The production of three energy commodities follows a joint characteristic. This paper presents a Lagrangian relaxation (LR) based algorithm for trigeneration planning with storages based on deflected subgradient optimization method. The trigeneration planning problem is modeled as a linear programming (LP) problem. The linear cost function poses the convergence challenge to the LR algorithm and the joint characteristic of trigeneration plants makes the operating region of trigeneration system more complicated than that of power-only generation system and that of combined heat and power (CHP) system. We develop an effective method for the long-term planning problem based on the proper strategy to form Lagrangian subproblems and solve the Lagrangian dual (LD) problem based on deflected subgradient optimization method. We also develop a heuristic for restoring feasibility from the LD solution. Numerical results based on realistic production models show that the algorithm is efficient and near-optimal solutions are obtained.  相似文献   

5.
This paper presents exact and heuristic solution procedures for a multiproduct capacitated facility location (MPCFL) problem in which the demand for a number of different product families must be supplied from a set of facility sites, and each site offers a choice of facility types exhibiting different capacities. MPCFL generalizes both the uncapacitated (or simple) facility location (UFL) problem and the pure-integer capacitated facility location problem. We define a branch-and-bound algorithm for MPCFL that utilizes bounds formed by a Lagrangian relaxation of MPCFL which decomposes the problem into UFL subproblems and easily solvable 0-1 knapsack subproblems. The UFL subproblems are solved by the dual-based procedure of Erlenkotter. We also present a subgradient optimization-Lagrangian relaxation-based heuristic for MPCFL. Computational experience with the algorithm and heuristic are reported. The MPCFL heuristic is seen to be extremely effective, generating solutions to the test problems that are on average within 2% of optimality, and the branch-and-bound algorithm is successful in solving all of the test problems to optimality.  相似文献   

6.
In this study we consider the elevator operation problem of single-car elevator systems with destination hall call registration. In this part we construct a branch-and-bound algorithm to solve the dynamic operation optimization problem formulated in the first part. To calculate lower bounds of the subproblems generated in the course of the branch-and-bound algorithm, we first relax some of the constraints of the subproblems and decompose the relaxed subproblems into three parts. Then, we apply the Lagrangian relaxation method to the decomposed subproblems.  相似文献   

7.
This paper integrates production and outbound distribution scheduling in order to minimize total tardiness. The overall problem consists of two subproblems. The first addresses scheduling a set of jobs on parallel machines with machine-dependent ready times. The second focusses on the delivery of completed jobs with a fleet of vehicles which may differ in their loading capacities and ready times. Job-dependent processing times, delivery time windows, service times, and destinations are taken into account. A genetic algorithm approach is introduced to solve the integrated problem as a whole. Two main questions are examined. Are the results of integrating machine scheduling and vehicle routing significantly better than those of classic decomposition approaches which break down the overall problem, solve the two subproblems successively, and merge the subsolutions to form a solution to the overall problem? And if so, is it possible to capitalize on these potentials despite the complexity of the integrated problem? Both questions are tackled by means of a numerical study. The genetic algorithm outperforms the classic decomposition approaches in case of small-size instances and is able to generate relatively good solutions for instances with up to 50 jobs, 5 machines, and 10 vehicles.  相似文献   

8.
A machining center is an advanced NC (Numerical Control) machine that has the capability to perform a variety of operations on a part by automatically changing the cutting tools. Because of its versatile processing capabilities, a machining center is often a production bottleneck, and effective scheduling can result in significant improvement of system performance. The problem, however, is very difficult since many factors such as machine setups, pallets, tool magazine, and possible tool overlapping among different part types, etc., have to be considered. This paper presents an optimization-based approach for the scheduling of a machining center with two pallets. A novel “separable” problem formulation that considers the above mentioned factors is presented. Lagrangian relaxation is applied to decompose the problem into simple subproblems, which are efficiently solved without encountering complexity difficulties. The subgradient method is then used to update the multipliers. Testing results indicate that the approach is effective, and the algorithm provides a valuable tool for solving stand-alone machining center problems. The approach also points out a direction on how to consider machining centers within a job shop environment.  相似文献   

9.
A dynamic programming method is presented for solving constrained, discrete-time, optimal control problems. The method is based on an efficient algorithm for solving the subproblems of sequential quadratic programming. By using an interior-point method to accommodate inequality constraints, a modification of an existing algorithm for equality constrained problems can be used iteratively to solve the subproblems. Two test problems and two application problems are presented. The application examples include a rest-to-rest maneuver of a flexible structure and a constrained brachistochrone problem.  相似文献   

10.
马宁  周支立  刘雅 《运筹与管理》2018,27(10):17-22
切割生产广泛存在于工业企业,是原材料加工的重要环节。已有文献主要关注单周期切割问题,但是切割计划也是生产计划的一部分,切割计划和生产计划应该协调优化,达到全局最优。本文研究考虑生产计划的多周期切割问题,目标是最小化运营成本,包括准备成本、切割成本、库存成本以及母材消耗成本。首先建立混合整数规划模型;提出动态规划启发式算法;最后对算例在多种情境下测试,分析成本因子变化对最优结果的影响。算法结果与CPLEX最优结果比较,平均误差为1.85%,表明算法是有效的。  相似文献   

11.
Problems of scheduling nonpreemptable jobs which require simultaneously a machine from a set of parallel, identical machines and a continuous, renewable resource are considered. For each job there are known: its processing speed as a continuous, concave function of a continuous resource allotted at a time and its processing demand. The optimization criterion is the schedule length. The problem can be decomposed into two interrelated subproblems: (i) to sequence jobs on machines, and (ii) to find an optimal (continuous) resource allocation among jobs already sequenced. Problem (ii) can be formulated as a convex programming problem with linear constraints and solved using proper solvers. Thus, the problem remains to generate a set of all feasible sequences of jobs on machines (this guarantees finding an optimal schedule in the general case). However, the cardinality of this set grows exponentially with the number of jobs. Thus, we propose to use heuristic search methods defined on the space of feasible sequences. Three metaheuristics: tabu search (TS), simulated annealing (SA) and genetic algorithm (GA) have been implemented and compared computationally with a random sampling technique. The computational experiment has been carried out on an SGI PowerChallenge XL computer with 12 RISC R8000 processors. Some directions for further research have been pointed out.  相似文献   

12.
The paper presents a tight Lagrangian bound and an efficient dual heuristic for the flow interception problem. The proposed Lagrangian relaxation decomposes the problem into two subproblems that are easy to solve. Information from one of the subproblems is used within a dual heuristic to construct feasible solutions and is used to generate valid cuts that strengthen the relaxation. Both the heuristic and the relaxation are integrated into a cutting plane method where the Lagrangian bound is calculated using a subgradient algorithm. In the course of the algorithm, a valid cut is added and integrated efficiently in the second subproblem and is updated whenever the heuristic solution improves. The algorithm is tested on randomly generated test problems with up to 500 vertices, 12,483 paths, and 43 facilities. The algorithm finds a proven optimal solution in more than 75% of the cases, while the feasible solution is on average within 0.06% from the upper bound.  相似文献   

13.
We consider a stowage-planning problem of arranging containers on a container ship in the maritime transportation system. Since containers are accessible only from the top of the stack, temporary unloading and reloading of containers, called shifting, is unavoidable if a container required to be unloaded at the current port is stacked under containers to be unloaded at later ports on the route of the ship. The objective of the stowage planning problem is to minimize the time required for shifting and crane movements on a tour of a container ship while maintaining the stability of the ship. For the problem, we develop a heuristic solution method in which the problem is divided into two subproblems, one for assigning container groups into the holds and one for determining a loading pattern of containers assigned to each hold. The former subproblem is solved by a greedy heuristic based on the transportation simplex method, while the latter is solved by a tree search method. These two subproblems are solved iteratively using information obtained from solutions of each other. To see the performance of the suggested algorithm, computational tests are performed on problem instances generated based on information obtained from an ocean container liner. Results show that the suggested algorithm works better than existing algorithms.  相似文献   

14.
This paper proposes a hybrid algorithm to tackle a real-world problem arising in the context of pulp and paper production. This situation is modelled as a production problem where one has to decide which wood will be used by each available processing unit (wood cooker) in order to minimize the variance of wood densities within each cooker for each period of the planning horizon. The proposed hybrid algorithm is built around two distinct phases. The first phase uses two interacting heuristic methods to identify a promising reduced search space, which is then thoroughly explored in the second phase. This hybrid algorithm produces high-quality solutions in reasonable computation times, especially for the largest test instances. Extensive computational experiments demonstrated the robustness and efficiency of the method.  相似文献   

15.
In this paper, we consider an optimization problem which aims to minimize a convex function over the weakly efficient set of a multiobjective programming problem. To solve such a problem, we propose an inner approximation algorithm, in which two kinds of convex subproblems are solved successively. These convex subproblems are fairly easy to solve and therefore the proposed algorithm is practically useful. The algorithm always terminates after finitely many iterations by compromising the weak efficiency to a multiobjective programming problem. Moreover, for a subproblem which is solved at each iteration of the algorithm, we suggest a procedure for eliminating redundant constraints.  相似文献   

16.
A new approach for solving the generalized assignment problem (GAP) is proposed that combines the exact branch & bound approach with the heuristic strategy of tabu search (TS) to produce a hybrid algorithm for solving GAP. The algorithm described uses commercial software to solve sub-problems generated by the TS guiding strategy. The TS approach makes use of the concept of referent domain optimisation and introduces novel add/drop strategies. In addition, the linear programming relaxation of GAP that forms part of the branch & bound approach is itself helpful in suggesting which variables might take binary values. Computational results on benchmark test instances are presented and compared with results obtained by the standard branch & bound approach and also several other heuristic approaches from the literature. The results show the new algorithm performs competitively against the alternatives and is able to find some new best solutions for several benchmark instances.  相似文献   

17.
1 引  言我们知道,描述常义线性规划问题的数学模型为:mincTxs.tAx=bx≥0  在经济问题中,线性规划中的向量c往往表示为价格,而在许多实际规划问题中价格向量c往往会在一定范围内扰动.这时,我们可以考虑这样一类广义线性规划问题:minx{maxy∈YyTx}s.tAx=b x∈X(1)其中,A∈Rm×n,b∈Rm,X={x∈Rn|x≥0},Y是Rn中的一个凸闭子集.有关广义线性规划问题的求解,何在文献[1]中作过一些讨论.我们通过对线性约束Ax=b引入乘子可得到广义线性规划问题(1)定义在X×Y×Rm上的Lagrange函数为:L(x,y,η)=yTx-ηT(Ax-b)(2)  如果x*是(1)式的…  相似文献   

18.
In this paper we consider the problem of locating one new facility with respect to a given set of existing facilities in the plane and in the presence of convex polyhedral barriers. It is assumed that a barrier is a region where neither facility location nor travelling are permitted. The resulting non-convex optimization problem can be reduced to a finite series of convex subproblems, which can be solved by the Weiszfeld algorithm in case of the Weber objective function and Euclidean distances. A solution method is presented that, by iteratively executing a genetic algorithm for the selection of subproblems, quickly finds a solution of the global problem. Visibility arguments are used to reduce the number of subproblems that need to be considered, and numerical examples are presented.  相似文献   

19.
We propose a planning model for products manufactured across multiple manufacturing facilities sharing similar production capabilities. The need for cross-facility capacity management is most evident in high-tech industries that have capital-intensive equipment and a short technology life cycle. We propose a multicommodity flow network model where each commodity represents a product and the network structure represents manufacturing facilities in the supply chain capable of producing the products. We analyze in depth the product-level (single-commodity, multi-facility) subproblem when the capacity constraints are relaxed. We prove that even the general-cost version of this uncapacitated subproblem is NP-complete. We show that there exists an optimization algorithm that is polynomial in the number of facilities, but exponential in the number of periods. We further show that under special cost structures the shortest-path algorithm could achieve optimality. We analyze cases when the optimal solution does not correspond to a source-to-sink path, thus the shortest path algorithm would fail. To solve the overall (multicommodity) planning problem we develop a Lagrangean decomposition scheme, which separates the planning decisions into a resource subproblem, and a number of product-level subproblems. The Lagrangean multipliers are updated iteratively using a subgradient search algorithm. Through extensive computational testing, we show that the shortest path algorithm serves as an effective heuristic for the product-level subproblem (a mixed integer program), yielding high quality solutions with only a fraction (roughly 2%) of the computer time.  相似文献   

20.
We propose a scenario decomposition algorithm for stochastic 0–1 programs. The algorithm recovers an optimal solution by iteratively exploring and cutting-off candidate solutions obtained from solving scenario subproblems. The scheme is applicable to quite general problem structures and can be implemented in a distributed framework. Illustrative computational results on standard two-stage stochastic integer programming and nonlinear stochastic integer programming test problems are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号