首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Abstract— In UV-irradiated vegetative cultures of the cellular slime mold Dictyostelium discoideum NC-4, single strand breaks appeared in the DNA very rapidly and at low temperatures (0–4°C). However, when these cells were incubated, prior to UV irradiation, in the presence of 2 m M 2,4-dinitrophenol (DNP), an uncoupler of oxidative phosphorylation, breaks did not appear in the DNA. Extracts prepared from cells that had been incubated either in the presence or absence of DNP were tested for endonucleolytic activities on a UV-irradiated exogenous DNA template (φX-174 RF I). Results suggested that DNP might mediate its effect by interfering with the action of a UV-specific endonuclease.  相似文献   

2.
The effect of bleomycin (BLM) on the growth of the tumor, murine B16 melanoma, implanted onto the chorioallantoic membrane of chick embryo was examined. The inhibition ratio of BLM was about 30% at 3 micrograms/egg. This inhibitory effect of BLM on the growth of the tumor was enhanced by an appropriate dose of ultraviolet (UV) irradiation. The inhibition ratios of BLM irradiated for 10, 30 and 60 min were in order of about 50, 30 and 30% at 3 micrograms/egg. However, when these BLMs pretreated with 1 mM 1,2-benzenediol (catechol) were administrated, the inhibition ratios of BLM irradiated for 0, 10, 30 and 60 min were about 30, 20, 10 and 10%, respectively. On the other hand, the direct cytotoxicity of BLM to cultured murine B16 melanoma cells was depressed with UV irradiation and its toxic activity was further decreased by treatment with catechol after irradiation. These findings show that, although the antitumor activity of BLM is enhanced by UV irradiation, the activity of UV-irradiated BLM is inhibited by catechol. Moreover, it seems to show that the present results may provide a useful manner for the in vivo activation of BLM.  相似文献   

3.
Abstract— S1 endonuclease was shown to remove thymine-containing pyrimidine dimers from UV-irradiated human DNA, although efficient removal could be demonstated only by using long digestion times, relatively high enzyme concentrations, and irradiation sufficient to yield dimer substitutions in DNA of 1 per 1W300 (dimers/base pair). Neutral and alkaline sucrose gradient analysis of strand break induction by S, of UV-irradiated DNA suggests that recognition of the dimer by S, is the limiting factor in its removal and dimer removal usually results from attack on the dimer containing DNA strand without the induction of a double-strand break.  相似文献   

4.
Abstract. –Excision of cyclobutyl dipyrimidines from, and accumulation of strand interruptions in, DNA of different strains of E. coli K12 were determined during liquid holding recovery after UV irradiation. The extent of Pyr <> Pyr excision was the same (20–25%) for both a pol A mutant ( E. coli P3478) and its parental wild type strain ( E. coli W3110); however, single strand interruptions accumulate during liquid holding of polA cells, but not in the parental strain. In contrast, excision was greatly reduced in a mutant (KMBL 1789) which is defective in the 5'→3' exonucleolytic function of DNA polymerase I. These data suggest that excision and resynthesis during liquid holding are carried out primarily, if not entirely, by DNA polymerase I. We further conclude that excision alone is both a necessary and sufficient condition to elicit liquid holding recovery, and that this excision requires a functional polymerase I 5'→ 3' exonuclease.  相似文献   

5.
Fluorometric analysis of DNA unwinding (FADU assay) was originally designed to detect X-ray-induced DNA damage in repair-proficient and repair-deficient mammalian cell lines. The method was modified and applied to detect DNA strand breaks in Chinese hamster ovary (CHO) cells exposed to ionizing radiation as well as to UV light. Exposed cells were allowed to repair damaged DNA by incubation for up to 1 h after exposure under standard growth conditions in the presence and in the absence of the DNA synthesis inhibitor aphidicolin. Thereafter, cell lysates were mixed with 0.15 M sodium hydroxide, and DNA unwinding took place at pH 12.1 for 30 min at 20 degrees C. The amount of DNA remaining double-stranded after alkaline reaction was detected by binding to the Hoechst 33258 dye (bisbenzimide) and measuring the fluorescence. After exposure to X-rays DNA strand breaks were observed in all cell lines immediately after exposure with subsequent restitution of high molecular weight DNA during postexposure incubation. In contrast, after UV exposure delayed production of DNA strand break was observed only in cell lines proficient for nucleotide excision repair of DNA photoproducts. Here strand break production was enhanced when the polymerization step was inhibited by adding the repair inhibitor aphidicolin during repair incubation. These results demonstrate that the FADU approach is suitable to distinguish between different DNA lesions (strand breaks versus base alterations) preferentially induced by different environmental radiations (X-rays versus UV) and to distinguish between the different biochemical processes during damage repair (incision versus polymerization and ligation).  相似文献   

6.
Abstract— UV-enhanced reactivation of minute-virus-of-mice (MVM), an autonomous parvovirus, was studied in parasynchronous mouse A9 cells. The survival of UV-irradiated MVM is increased in cells which have been UV-irradiated prior to infection. UV-enhanced reactivation can be explained neither by facilitated plaque detection on UV-treated indicator cells, nor by altered kinetics of virus production by UV-irradiated cells. No effect of the multiplicity of infection on virus survival was detected in unirra-diated or irradiated cells. The magnitude of UV-enhanced reactivation is a direct exponential function of the UV dose administered to the virus while virus survival is inversely proportional to the UV dosage. The expression of UV-enhanced reactivation can be activated in cells arrested in G0, it requires de novo protein synthesis and it is maximal when cells are irradiated 30 h before the onset of viral DNA replication. Early phases of the viral cycle, such as adsorption to cellular receptors, migration to the nucleus and uncoating, were not affected by cell irradiation and are unlikely targets of the UV-enhanced reactivation function(s). These results, together with the single-strandedness of the viral genome, strongly suggest that the step stimulated in UV-irradiated cells functions concomitant with, or subsequent to, viral DNA replication.  相似文献   

7.
Abstract— Replication continues in wild-type (but not rad mutant) Caenorhabditis elegans embryos even after exposure to massive fluences of UV radiation. It is of interest to elucidate the mechanism(s) for this "damage-resistant" DNA synthesis. In this study, DNA from unirradiated and UV-irradiated wild-type embryos was examined using the electron microscope. Large fluences of UV radiation (180 J m−2) had little effect on either replication bubble size or distances between bubbles in wild-type embryos, indicating that the damage-resistant DNA synthesis was not grossly aberrant. Conversely, UV irradiation significantly decreased center-to-center distances between bubbles in excision-repair-deficient rad-3 embryos. This suggests that the decreased DNA synthesis observed after UV irradiation in rad-3 embryos is due largely to blockage of elongation of DNA synthesis.  相似文献   

8.
The contribution of DNA strand breaks accumulating in the course of nucleotide excision repair to upregulation of the p53 tumor suppressor protein was investigated in human dermal fibroblast strains after treatment with 254 nm ultraviolet (UV) light. For this purpose, fibroblast cultures were exposed to UV and incubated for 3 h in the presence or absence of l-beta-D-arabinofuranosylcytosine (araC) and/or hydroxyurea (HU), and then assayed for DNA strand breakage and p53 protein levels. As expected from previous studies, incubation of normal and ataxia telangiectasia (AT) fibroblasts with araC and HU after UV irradiation resulted in an accumulation of DNA strand breaks. Such araC/HU-accumulated strand breaks (reflecting nonligated repair-incision events) following UV irradiation were not detected in xeroderma pigmentosum (XP) fibroblast strains belonging to complementation groups A and G. Western blot analysis revealed that normal fibroblasts exhibited little upregulation of p53 (approximately 1.2-fold) when incubated without araC after 5 J/m2 irradiation, but showed significant (three-fold) upregulation of p53 when incubated with araC after irradiation. AraC is known to inhibit nucleotide excision repair at both the damage removal and repair resynthesis steps. Therefore, the potentiation of UV-induced upregulation of p53 evoked by araC in normal cells may be a consequence of either persistent bulky DNA lesions or persistent incision-associated DNA strand breaks. To distinguish between these two possibilities, we determined p53 induction in AT fibroblasts (which do not upregulate p53 in response to DNA strand breakage) and in XP fibroblasts (which do not exhibit incision-associated breaks after UV irradiation). The p53 response after treatment with 5 J/m2 UV and incubation with araC was similar in AT, XPA, XPG and normal fibroblasts. In addition, exposure of XPA and XPG fibroblasts to UV (5, 10 or 20 J/m2) followed by incubation without araC resulted in a strong upregulation of p53. We further demonstrated that HU, an inhibitor of replicative DNA synthesis (but not of nucleotide excision repair), had no significant impact on p53 protein levels in UV irradiated and unirradiated human fibroblasts. We conclude that upregulation of p53 at early times after exposure of diploid human fibroblasts to UV light is triggered by persistent bulky DNA lesions, and that incision-associated DNA strand breaks accumulating in the course of nucleotide excision repair and breaks arising as a result of inhibition of DNA replication contribute little (if anything) to upregulation of p53.  相似文献   

9.
Abstract— Morphological abnormality due to the UV irradiation of sperm and its modification by photoreactivation (PR) were studied in the sea urchin, Hemicentrotus pukherrimus. When sperm was UV-irradiated and allowed to fertilize unirradiated eggs, the effect of the UV was manifested as an abnormal morphology of embryos in the gastrula or later stages. The UV-induced morphological abnormality was prevented by photoreactivation when the fertilized eggs were illuminated with visible light. In the experiments on a stage-dependent change of PR effectiveness, it was found that an illumination sufficed to effect a nearly complete PR when applied up to the onset of the first DNA synthetic phase, while the PR effectiveness declined thereafter. Illumination after the completion of DNA synthesis had little effect for PR.  相似文献   

10.
Large amounts of DNA-enriched materials, such as salmon milts and shellfish gonads, are discarded as industrial waste. We have been able to convert the discarded DNA to a useful material by preparing novel DNA films by UV irradiation. When DNA films were irradiated with UV light, the molecular weight of DNA was greatly increased. The reaction was inhibited by addition of the radical scavenger galvinoxyl suggesting that the DNA polymerization with UV irradiation proceeded by a radical reaction. Although this UV-irradiated DNA film was water-insoluble and resistant to hydrolysis by nuclease, the structure of the DNA film in water was similar to non-irradiated DNA and maintained B-form structure. In addition, the UV-irradiated DNA film could effectively accumulate and condense harmful DNA-intercalating compounds, such as ethidium bromide and acridine orange, from diluted aqueous solutions. The binding constant and exclusion number of ethidium bromide for UV-irradiated DNA were determined to be 6.8 +/- 0.3 x 10(4) M(-1) and 1.6 +/- 0.2, respectively; these values are consisted with reported results for non-irradiated DNA. The UV-irradiated DNA films have potential uses as a biomaterial filter for the removal of harmful DNA intercalating compounds.  相似文献   

11.
Abstract— Photodynamic therapy (PDT) is a new modality for treatment of malignancy. In this paper, we reported the effect of UV activated dihematoporphyrin ether (DHE) on [3H] thymidine uptake and DNA synthesis in murine bladder tumor cells,MBT–2. Exponentially growing cells were pretreated with 0.05–5 μg/ml of DHE for 30 min in complete darkness prior to irradiation with 0.15-0.90 J/cm2 of UV light (265 nm). The rates of thymidine uptake and DNA synthesis were suppressed in a DHE concentration and photic energy dependent manner. Double reciprocal analysis on the kinetics of the thymidine uptake and DNA synthesis indicated that the inhibition was non-competitive, i.e. decrease in both the apparent Km value and maximum velocity in DHE plus UV light treated cells. The activities of DNA polymerase a and (3 were determined by [*H] dATP incorporation into DNA of permeabilizedMBT–2 cells. DNA polymerase a activity was approximately 60% of the control after 0.45 J/cm2 of UV light exposure; a further inhibition of DNA polymerase a was observed when 0.5–5ng/W of DHE and UV photoradiation were combined. In contrast, a slight stimulation of DNA polymerase fJ was noted after a similar treatment. This study demonstrates that photodynamic therapy-induced suppression of DNA synthesis inMBT–2 cells is a complex process involving in reduction of thymidine transport as well as the perturbation of the enzymes involved in DNA synthesis.  相似文献   

12.
Abstract The preparations of chicken erythrocyte linear double-stranded DNA and superhelical plasmid pBR322 DNA were irradiated by continuous low-intensity UV radiation (I = 25-50 W/m2, λ= 254 nm) as well as by highintensity picosecond laser UV radiation (I = 1011-1013 W/m2, λ= 266 nm). The effect of DNA secondary structure alterations on the formation of liquid-crystalline dispersions from UV-irradiated DNA preparations was studied. It was shown that in the case of linear DNA, watching the disappearance of abnormal optical activity characteristic for cholesteric liquid crystal we managed to detect the presence of photochemical alterations in DNA irradiated by low-intensity UV radiation at an absorbed energy of more than 20 quanta per nucleotide. In the case of superhelical DNA using enzyme treatment of liquid-crystalline dispersions and monitoring the appearance of abnormal optical activity, we detected the presence of photochemical alterations in DNA molecules after low-intensity UV irradiation at an absorbed energy of less than 4 quanta per nucleotide. Under the latter approach using picosecond UV laser irradiation at three different light intensities we were able to distinguish the different mechanisms of fine alterations in DNA secondary structure at an absorbed energy value of about 3 quanta per nucleotide.  相似文献   

13.
Using the remarkable difference in the affinity of graphene oxide (GO) with double strand DNA (dsDNA) and short DNA fragments, we report for the first time a GO-based nonrestriction nuclease responsive system. Our system was composed of GO and a fluorescent dye fluorescein amidite (FAM)-labeled dsDNA substrate (F-dsDNA). At first, the fluorescence of this F-dsDNA substrate was quenched upon addition of GO. When nuclease was added to the mixture of dsDNA and GO, hydrolysis of dsDNA was initiated and small DNA fragments were produced. As a result, the short FAM-linked DNA fragments were released from GO due to the weak affinity of GO with short DNA fragments, and the fluorescence got a restoration. At present, many sensing systems are based on the fact that GO prefers to bind long single strand DNA (ssDNA) over dsDNA or short ssDNA. As for our system, GO has a prior binding with dsDNA over short DNA fragments. Compared with previous methods, this assay platform has some advantages. First, since GO can be prepared in large quantities from graphite available at very low cost, this method shows advantages of simplicity and cost efficiency. Besides, the proposed GO-based nuclease assay provides high sensitivity due to the super quenching capacity of GO. Using deoxyribonuclease I (DNase I) as a model system, DNase I activity can be quantitatively analyzed by the velocity of the enzymatic reaction, and 1.75 U mL−1 DNase I can be significantly detected. Moreover, the fluorescent intensity with various concentrations of nuclease becomes highly discriminating after 3–8 min. Thus, it is possible to detect nuclease activity within 3–8 min, which demonstrates another advantage of quick response of the present system. Finally, use of dsDNA as substrate, our method can achieve real-time nuclease activity/inhibition assay, which is time-saving and effortless.  相似文献   

14.
Smittia embryos were UV-irradiated during intravitelline cleavage. At this stage, nuclei are heavily shielded by yolk-rich cytoplasm, and do not synthesize detectable amounts of RNA. Irradiation at 265, 285 and 295 nm wavelength caused biological inactivation, and pyrimidine dimer formation in maternal RNA as described earlier (Kalthoff, 1976; Jäckie and Kalthoff, 1978). In addition, we observed marked effects on protein synthesis: (1) The overall rate of [35S]-methionine incorporation in vivo was reduced to less than half of the normal rate. (2) Two-dimensional gel electrophoresis revealed quantitative variations in the synthetic rate of some polypeptides, and the appearance of new ones in UV-irradiated embryos. (3) Translation of polyadenylated RNA from Smittia embryos in a cell-free system was inhibited by UV irradiation in vivo. (4) The apparent degradation, during early embryogenesis, of maternal polyadenylated RNA was retarded in UV-irradiated embryos. Exposure to light (400 nm) after UV caused partial photoreversal of all UV effects observed. Both the photoreactivable sector of UV-inactivation, and the photoreactivated portion of UV inhibition of protein synthesis, were correlated with the amounts of pyrimidine dimers generated in maternal RNA by UV irradiation at the three wavelengths used. These correlated effects were produced most efficiently by 295 nm radiation, indicating the involvement of photosensitizing components in the embryos. Our data show, for the first time to our knowledge, that animal mRNA, after UV irradiation, can be photoreactivated in vivo. Moreover, our results strongly suggest that the photorepairable lesions consist of pyrimidine dimers generated in a photosensitized reaction.  相似文献   

15.
16.
2‐Fluoroadenine (2FA) is a therapeutic agent, which is suggested for application in cancer radiotherapy. The molecular mechanism of DNA radiation damage can be ascribed to a significant extent to the action of low‐energy (<20 eV) electrons (LEEs), which damage DNA by dissociative electron attachment. LEE induced reactions in 2FA are characterized both isolated in the gas phase and in the condensed phase when it is incorporated into DNA. Information about negative ion resonances and anion‐mediated fragmentation reactions is combined with an absolute quantification of DNA strand breaks in 2FA‐containing oligonucleotides upon irradiation with LEEs. The incorporation of 2FA into DNA results in an enhanced strand breakage. The strand‐break cross sections are clearly energy dependent, whereas the strand‐break enhancements by 2FA at 5.5, 10, and 15 eV are very similar. Thus, 2FA can be considered an effective radiosensitizer operative at a wide range of electron energies.  相似文献   

17.
18.
Abstract— Collagen was exposed to an ultraviolet (UV) lamp that emitted predominantly in the UVB range. The cross-linking of collagen type I and type IV by UV irradiation was observed. Amino acid analyses revealed that Tyr residues in both collagen types I and IV were decreased by irradiation. In collagen type IV, losses of His and Met residues were also observed. These losses of collagen type IV may be due to the degradation of Trp, which exists in collagen type IV and decreased drastically during UV irradiation. To clarify the mechanism of Tyr modification in both types of collagen, the degradation products of Tyr were analyzed. Dityrosine, which is a dimer of the Tyr residue, could not be detected in the acid hydrolysates of UV-irradiated collagen. However, 3,4-dihydroxyphenylalanine, DOPA, was detected in the hydrolysates using HPLC with an electrochemical detector. The amounts of DOPA in the acid hydrolysates of collagen exposed to UV light for 24 h were approximately 350 pmol/mg protein (collagen type IV) and 80 pmol/mg protein (collagen type I). The DOPA formed may partially contribute to photoaging of the skin.  相似文献   

19.
BACKGROUND: 5-Bromodeoxyuridine is a radiosensitizing agent that is currently being evaluated in clinical trials as an adjuvant in the treatment of a variety of cancers. gamma-Radiolysis and UV irradiation of oligonucleotides containing 5-bromodeoxyuridine result in the formation of direct strand breaks at the 5'-adjacent nucleotide by oxidation of the respective deoxyribose. We investigated the effects of DNA secondary structure and O2 on the induction of direct strand breaks in 5-bromodeoxyuridine-containing oligonucleotides. RESULTS: The efficiency of direct strand break formation in duplex DNA is dependent upon O2 and results in fragments containing 3'-phosphate and the labile 3'-ketodeoxyadenosine termini. The ratio of the 3'-termini is also dependent upon O2 and structure. Deuterium product isotope effects and tritium-transfer studies indicate that hydrogen-atom abstraction from the C1'- and C2'-positions occurs in an O2- and structure-dependent manner. CONCLUSIONS: The reaction mechanisms by which DNA containing 5-bromodeoxyuridine is sensitized to damage by UV irradiation are dependent upon whether the substrate is hybridized and upon the presence or absence of O2. Oxygen reduces the efficiency of direct strand break formation in duplex DNA, but does not affect the overall strand damage. It is proposed that the sigma radical abstracts hydrogen atoms from the C1'- and C2'-positions of the 5'-adjacent deoxyribose moiety, whereas the nucleobase peroxyl radical selectively abstracts the C1'-hydrogen atom from this site. This is the second example of DNA damage amplification by a nucleobase peroxyl radical, and might be indicative of a general reaction pattern for this family of reactive intermediates.  相似文献   

20.
A distamycin model containing an isosteric diazine linked pyrrole has been designed and synthesized. The key steps of the synthesis involved the successful diazotization of the 4-amino-pyrrole derivatives to give the diazomium salts, which undergo coupling reactions with N-methylpyrrole to yield the directly linked diazine compounds. The amide isosteric-diazine pyrrole I demonstrated photo-induced DNA damage upon iradiation with UV light (365 nm). Spectrophotometric and mass spectrometric identification suggest that the azo-linkage in I did not dissociate during irradiation. Moreover, compound I produced DNase I footprints with the HexB DNA fragment at AT sites, as well as some other mixed sequences (5'-ATGTCG-3'), indicative of the additional role of the diazine-linkage for interaction at the duplex DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号