首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Some inimitable and therapeutic coumarin‐substituted fused[1,2,4]triazolo‐[3,4‐b][1,3,4]thiadizole derivatives were synthesized by the cyclocondensation reaction of 2‐oxo‐2H‐chromene‐3‐carboxylic acid ( 1 ) and 4‐amino‐5‐hydrazinyl‐4H‐[1,2,4]‐triazole‐3‐thiol ( 2 ) by using phosphorous oxychloride as a cyclizing agent. This cyclized intermediate 3‐(3‐hydrazino‐[1,2,4]triazolo[3,4‐b][1,3,4]thiadiazol‐6‐yl)‐chromen‐2‐one ( 3 ) later condensation with various ethyl 2‐(2‐arylhydrazono)‐3‐oxobutanoates ( 4 ) in NaOAc/MeOH under reflux conditions afforded the corresponding new series of aryl‐substituted hydrazono‐pyrazolyl‐[1,2,4]triazolo[3,4‐b][1,3,4][thiadiazol]‐coumarin derivatives ( 5 ) in good to excellent yields. The structures of newly synthesized compounds were established on the basis of elemental analysis, IR, 1H NMR and mass spectroscopic studies.  相似文献   

2.
A series of novel 6‐[(1,3,4‐thiadiazol‐2‐yl)sulfanyl]‐7‐phenylpyrazolo[1,5‐a]pyrimidines, 5‐phenyl‐6‐[(1,3,4‐thiadiazol‐2‐yl)sulfanyl]imidazo[1,2‐a]pyrimidines, and 2‐phenyl‐3‐[(1,3,4‐thiadiazol‐2‐yl)sulfanyl]pyrimido[1,2‐a]benzimidazoles have been synthesized in four steps starting with 2‐hydroxyacetophenone. The intermediate 3‐[(1,3,4‐thiadiazol‐2‐yl)sulfanyl]‐4H‐1‐benzopyran‐4‐ones reacted with pyrazol‐3‐amines, 5‐methylpyrazol‐3‐amine, and 1H‐imidazol‐2‐amine, 1H‐benzimidazol‐2‐amine via a cyclocondensation to give the title compounds in the presence of MeONa as base, respectively. The approach affords the target compounds in acceptable‐to‐good yields. The new compounds were characterized by their IR, NMR, and HR mass spectra.  相似文献   

3.
The condensation of malonoaldehyde derivatives with either a 3‐amino‐[1,2,4]‐triazole or a 3,5‐diamino‐[1,2,4]‐triazole precursor was studied. In agreement with previous reports, two different bicycles, namely, bearing the regioisomeric [1,2,4]triazolo[1,5‐a]pyrimidine ( 1 ) or[1,2,4] triazolo [4,3‐a]pyrimidine ( 2 ) structural surrogates, could be obtained. We found that, depending on the triazole precursor, only one regioisomer resulted, either of the 1 or 2 series. We also observed that these two structural surrogates could be unambiguously differentiated by indirectly measuring their 15N chemical shifts by 1H? 15N HMBC experiments. The occasional conversion of [1,2,4]triazolo[4,3‐a]pyrimidines to the [1,2,4]triazolo[1,5‐a]pyrimidine counterparts could be unequivocally determined by 15N NMR data. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Dibenz[b,f]azepine (DBA) is a privileged 6‐7‐6 tricyclic ring system of importance in both organic and medicinal chemistry. Benzo[b]pyrimido[5,4‐f]azepines (BPAs), which also contain a privileged 6‐7‐6 ring system, are less well investigated, probably because of a lack of straightforward and versatile methods for their synthesis. A simple and versatile synthetic approach to BPAs based on intramolecular Friedel–Crafts alkylation has been developed. A group of closely‐related benzo[b]pyrimido[5,4‐f]azepine derivatives, namely (6RS)‐4‐chloro‐6,11‐dimethyl‐6,11‐dihydro‐5H‐benzo[b]pyrimido[5,4‐f]azepine, C14H14ClN3, (I), (6RS)‐4‐chloro‐8‐hydroxy‐6,11‐dimethyl‐6,11‐dihydro‐5H‐benzo[b]pyrimido[5,4‐f]azepine, C14H14ClN3O, (II), (6RS)‐4‐<!?tlsb=‐0.14pt>chloro‐8‐methoxy‐6,11‐dimethyl‐6,11‐dihydro‐5H‐benzo[b]pyrimido[5,4‐f]azepine, C15H16ClN3O, (III), and (6RS)‐4‐chloro‐8‐methoxy‐6,11‐dimethyl‐2‐phenyl‐6,11‐dihydro‐5H‐benzo[b]pyrimido[5,4‐f]azepine, C21H20ClN3O, (IV), has been prepared and their structures compared with the recently published structure [Acosta‐Quintero et al. (2015). Eur. J. Org. Chem. pp. 5360–5369] of (6RS)‐4‐chloro‐2,6,8,11‐tetramethyl‐6,11‐dihydro‐5H‐benzo[b]pyrimido[5,4‐f]azepine, (V). All five compounds crystallize as racemic mixtures and they have very similar molecular conformations, with the azepine ring adopting a boat‐type conformation in each case, although the orientation of the methoxy substituent in each of (III) and (IV) is different. The supramolecular assemblies in (II) and (IV) depend upon hydrogen bonds of the O—H...N and C—H...π(arene) types, respectively, those in (I) and (V) depend upon π–π stacking interactions involving pairs of pyrimidine rings, and that in (III) depends upon a π–π stacking interaction involving pairs of phenyl rings. Short C—Cl...π(pyrimidine) contacts are present in (I), (II) and (IV) but not in (III) or (V).  相似文献   

5.
A novel series of substituted [1,2,4]triazolo[4′,3′:1,2]pyrimido[4,5‐c ]benzo[f ]isoquinolin‐14(10H )‐one was synthesized from the reaction of hydrazonoyl chlorides with pyrimidine thione derivative or via oxidative cyclization of 3‐(2‐substituted‐benzylidene‐hydrazinyl)‐7,8‐dihydrobenzo[f ]pyrimido[4,5‐c ]isoquinolin‐1(2H )‐one. Also, some polyhetero‐cyclic ring systems were prepared through the reaction of 2‐dimethylaminomethylene‐3,4‐dihydro‐2H‐naphthalen‐1‐one and heterocyclic amines. The biological activity of some new products was evaluated, and the results obtained revealed that compounds 10e , 13a , and 18 showed excellent activities against the most bacteria and fungi species used.  相似文献   

6.
Derivatives of the new ring system pyrrolo[3,4‐e][1,2,3] triazolo[1,5‐a]pyrimidine 6 were prepared in high yields in one step by reaction of 3‐azidopyrrole 3 and substituted acetonitriles. Compound 6b rearranged, upon heating in dimethyl sulfoxide in the presence of water, to pyrrolo[3,4‐d][1,2,3]triazolo‐[1,5‐a]pyrimidine 7.  相似文献   

7.
An efficient one‐pot synthesis of 5‐(trifluoromethyl)‐4,7‐dihydro‐7‐aryl‐[1,2,4]triazolo[1,5‐a]pyrimidine derivatives was performed via the reaction of aryl aldehyde, 3‐amino‐1,2,4‐triazole and ethyl 4,4,4‐trifluoro‐3‐oxobutanoate or 4,4,4‐trifluoro‐1‐phenylbutane‐1,3‐dione in ionic liquid. This method has the advantages of short synthetic route, operational simplicities, mild reaction conditions, high yields and eco‐friendliness.  相似文献   

8.
Formylation of 5‐methyl‐7‐phenyl‐4,7‐dihydro‐1,2,4‐triazolo[1,5‐a]pyrimidine 1a using Vilsmeier–Haack conditions yields 5‐methyl‐7‐phenyl‐4,7‐dihydro‐1,2,4‐triazolo[1,5‐a]pyrimidin‐6‐ylcarbaldehyde 3a . 5,7‐Diaryl‐4,7‐dihydro‐1,2,4‐triazolo[1,5‐a]pyrimidines 1b , 1c in this reaction apart from formylation undergo recyclization into 5‐aryl‐1,2,4‐triazolo[1,5‐a]pyrimidin‐6‐ylmethane derivatives 4b , 4c , 5b , 5c , and 6 . The structure of the synthesized compounds was determined on the basis of NMR, IR, and MS spectroscopic data and confirmed by the X‐ray analysis of the 6‐(ethoxy‐phenyl‐methyl)‐5‐phenyl‐[1,2,4]triazolo[1,5‐a]pyrimidine 6 , 5‐phenyl‐6‐(1‐phenyl‐vinyl)‐[1,2,4]triazolo[1,5‐a]pyrimidine 11 , and 7‐phenyl‐6‐(1‐phenyl‐vinyl)‐[1,2,4]triazolo[4,3‐a]pyrimidine 12 .  相似文献   

9.
Since deregulation of the tyrosine‐kinase receptor c‐Met is implicated in several human cancers and is an attractive target for small‐molecule‐drug discovery, we report herein the synthesis of 2,3,4,5‐tetrahydro‐8‐[1‐(quinolin‐6‐ylmethyl)‐1H‐1,2,3‐triazolo[4,5‐b]pyrazin‐6‐yl]‐1H‐pyrido[4,3‐b]indoles 4a – 4c and 2,3,4,5‐tetrahydro‐8‐[3‐(quinolin‐6‐ylmethyl)‐1,2,4‐triazolo[4,3‐b]pyridazin‐6‐yl]‐1H‐pyrido[4,3‐b]indoles 5a – 5c . These indole derivatives demonstrated inhibition of c‐Met kinase activity. Concurrently, five key intermediates were synthesized. These compounds could be prepared in good yields.  相似文献   

10.
In search of novel herbicides with high activity, a series of 2‐arylthio‐1,4,2,‐triazolo[1,5‐a]pyrimidines (3) were synthesized by cyclization of 5‐amino‐3‐arylthio‐1,2,4‐triazoles with 1, 3‐diketones or by the nucleophilic substitution of substituted thiophenols with 2‐methylsulfonyl‐l,2,4‐triazolo [1,5‐a]‐pyrimidine. The structures of all compounds prepared were confirmed by 1H NMR and MS spectroscopy along with elemental analyses. Preliminary bioassays indicated that some of the compounds 3 had good herbicidal activity against rape. In addition, the regioselectivity in the reaction of 5‐amino‐3‐substituted arylthio‐l,2,4‐triazoles with benzoylacetone was studied.  相似文献   

11.
The cyclization of 1‐amino‐2‐mercapto‐5‐[1‐(4‐ethoxyphenyl)‐5‐methyl‐1,2,3‐triazol‐4‐yl]‐1,3,4‐triazole which was synthesized from p‐ethoxyaniline with various triazole acid in absolute phosphorus oxychloride yields 3,6‐bis(1,2,3‐triazolyl)‐s‐triazolo[3,4‐b]‐1,3,4‐thiadiazole derivatives 9a?j , and their structures are established by MS, IR, CHN and 1H NMR spectral data.  相似文献   

12.
Pyrano[4,3‐d]pyrimidine derivative 3 was prepared by reaction of chlorocarbonyl isocyanate 1 with enaminonitrile 2 . Compound 3 reacted with nitrogen nucleophiles 4a‐f to afford 2‐substituted pyrido[4,3d]pyrimidine 5–8 , pyrimido[i]1,5a‐diaza‐9‐oxafluorene 9 and pyrimido[i]5a‐aza‐9‐thiafluorene 10 derivatives. Also, compound 3 reacted with active methylene compounds 4j to yield pyrimidine derivatives 14–16 which on reaction with EtONa 4k afforded 1,5,7‐triaza‐10‐oxaphenanthrene derivatives 17–19 .  相似文献   

13.
A new four‐component synthesis of spiro[4H‐indeno[1,2‐b]pyridine‐4,3′‐[3H]indoles] and spiro[acenaphthylene‐1(2H),4′‐[4H‐indeno[1,2‐b]pyridines] by the reaction of indane‐1,3‐dione, 1,3‐dicarbonyl compounds, isatins (=1H‐indole‐2,3‐diones) or acenaphthylene‐1,2‐dione, and AcONH4 in refluxing toluene in the presence of a catalytic amount of pyridine is reported.  相似文献   

14.
The cyclization of 1‐amino‐2‐mercapto‐5‐[5‐methyl‐1‐(4‐methylphenyl)‐1,2,3‐triazol‐4‐yl]‐1,3,4‐triazole with various α‐haloketone in absolute ethanol yields 7H‐3‐[5‐methyl‐1‐(4‐methylphenyl)‐1,2,3‐triazol‐4‐yl]‐6‐substituted‐s‐triazolo[3,4‐b]‐1,3,4‐thiadiazines and their structures are established by elemental analysis, MS, IR and 1H NMR spectral data.  相似文献   

15.
Five new 6‐ferrocenyl‐3‐substituted 7H‐1,2,4‐triazolo[3, 4‐b]‐1,3,4‐thiadiazines ( 3a‐e ) have been synthesized and characterized on the basis of elemental analyses and spectral data. The antiproliferative activities were examined in two human cell lines (BJ and HT 1080) with the acid phosphatase assay. The results showed that all compounds could reduce cell viability. The significant difference between the two cell lines was that fibrosarcoma HT 1080 cells could indeed be more susceptible to the compounds than the normal fibroblast BJ cells.  相似文献   

16.
Cyclization of 5‐cyano‐1,6‐dihydro‐4‐methyl‐2‐phenyl‐6‐thioxopyrimidine 4 with excess of 85% hydrazine hydrate afforded the 3‐amino‐4‐methyl‐6‐phenylpyrazolo[3,4‐d]pyrimidine 5 , which can react with appropriate Mannich base derivatives 13a‐c and chalcones 27a,b to yield the corresponding 6,8‐disubstituted 7,8‐dihydropyrimido[2,3:4,3]pyrazolo[1,5‐a]pyrimidines 15a‐c and 30a,b , respectively. On the other hand, the 6,7,8‐trisubstituted pyrimido[2,3:4,3]pyrazolo[1,5‐a]pyrimidine derivatives 8a‐g, 20a‐e, 36 and 38 were obtained by treatment of compound 5 with appropriate 1,3‐diketones 6a‐g , 3‐dimethylamino‐1‐(substituted)prop‐2‐enones 18a‐e , 3‐aminocrotononitrile 3 , and ethoxymethylenemalononitrile 37 under acidic condition, respectively.  相似文献   

17.
A diversity of new 7 ‐substituted[1,2,4]triazolo[1,5‐a]pyrimidine and 6‐substituted[1,2,4]triazolo[1,5‐a]pyrimidine‐7‐amine derivatives has been synthesized via reaction of 3‐amino‐[1,2,4]triazole with enaminonitriles and enaminones. The regio orientation and the structure of the products were confirmed by spectral and analytical data and synthesis via an alternative route. The procedure proved to be simple, efficient, and high yielding, and diversities of [1,2,4]triazolo[1,5‐a]pyrimidines were obtained.  相似文献   

18.
Two series of 7‐arylazo‐7H‐3‐(2‐methyl‐1H‐indol‐3‐yl)pyrazolo[5,1‐c][1,2,4]triazol‐6(5H)‐ones 4 and 7‐arylhydrazono‐7H‐3‐(2‐methyl‐1H‐indol‐3‐yl)‐[1,2,4]triazolo[3,4‐b][1,3,4]thiadiazines 7 were prepared via reactions of 4‐amino‐3‐mercapto‐5‐(2‐methyl‐1H‐indol‐3‐yl)‐1,2,4‐triazole 1 with ethyl arylhydrazono‐chloroacetate 2 and N‐aryl‐2‐oxoalkanehydrazonoyl halides 5 , respectively. A possible mechanism is proposed to account for the formation of the products. The biological activity of some of these products was also evaluated.  相似文献   

19.
Five new 3,6‐diaryl‐1,2,4‐triazolo[3,4‐b]1,3,4‐oxadiazole derivatives were synthesized by 9 steps from aromatic acids and evaluated for their activities of anticancer and antibacteria. The structures of all new compounds synthesized were elucidated by MS, IR, 1HNMR and HRMS.  相似文献   

20.
A simple and effective two‐step approach to tricyclic pyrimidine‐fused benzazepines has been adapted to give the tetracyclic analogues. In (RS)‐8‐chloro‐6‐methyl‐1,2,6,7‐tetrahydropyrimido[5′,4′:6,7]azepino[3,2,1‐hi]indole, C15H14ClN3, (I), the five‐membered ring adopts an envelope conformation, as does the reduced pyridine ring in (RS)‐9‐chloro‐7‐methyl‐2,3,7,8‐tetrahydro‐1H‐pyrimido[5′,4′:6,7]azepino[3,2,1‐ij]quinoline, C16H16ClN3, (II). However, the seven‐membered rings in (I) and (II) adopt very different conformations, with the result that the methyl substituent occupies a quasi‐axial site in (I) but a quasi‐equatorial site in (II). The molecules of (I) are linked by C—H...N hydrogen bonds to form C(5) chains and inversion‐related pairs of chains are linked by a π–π stacking interaction. A combination of a C—H...π hydrogen bond and two C—Cl...π interactions links the molecules of (II) into complex sheets. Comparisons are made with some similar fused heterocyclic compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号