首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new diterpenoids, (3β,13S)‐3‐O‐[6‐O‐acetyl‐β‐D ‐glucopyranosyl]‐13‐Oα‐L ‐rhamnopyranosyllabda‐8(17),14‐diene ( 1 ) and (4R,13S)‐18‐Oβ‐D ‐glucopyranosyllabda‐8(17),14‐dien‐13‐ol ( 2 ) have been isolated from the 95% EtOH extract of the dry fronds of Diplopterygium rufopilosum. Their structures were characterized by spectroscopic methods, including 1D‐NMR, 2D‐NMR, and HR‐ESI‐MS.  相似文献   

2.
Two new compounds, (6S,13S)‐6‐{[β‐D ‐glucopyranosyl‐(1→4)‐α‐L ‐rhamnopyranosyl]oxy}cleroda‐3,14‐dien‐13‐ol ( 1 ) and kadsuric acid 3‐methyl ester ( 2 ), together with nine known compounds, (6S,13E)‐6‐{[β‐D ‐glucopyranosyl‐(1→4)‐α‐L ‐rhamnopyranosyl]oxy}cleroda‐3,13‐dien‐15‐ol ( 3 ), (6S,13S)‐6‐[6‐O‐acetyl‐β‐D ‐glucopyranosyl‐(1→4)‐α‐L ‐rhamnopyranosyl]oxy}‐13‐{[α‐L ‐rhamnopyranosyl‐(1→4)‐β‐D ‐fucopyranosyl]oxy}cleroda‐3,14‐diene ( 4 ), (6S,13S)‐6‐{[6‐Oβ‐D ‐glucopyranosyl‐(1→4)‐α‐L ‐rhamnopyranosyl]oxy}‐13‐{[α‐L ‐rhamnopyranosyl‐(1→4)‐β‐D ‐fucopyranosyl]oxy}cleroda‐3,14‐diene ( 5 ), 15‐hydroxydehydroabietic acid ( 6 ), 15‐hydroxylabd‐8(17)‐en‐19‐oic acid ( 7 ), junicedric acid ( 8 ), (4β)‐kaur‐16‐en‐18‐oic acid ( 9 ), (4β)‐16‐hydroxykauran‐18‐oic acid ( 10 ), and (4β,16β)‐16‐hydroxykauran‐18‐oic acid ( 11 ) were isolated from the fronds of Dicranopteris linearis or D. ampla. Their structures were established by extensive 1D‐ and 2D‐NMR spectroscopy. Compounds 1 and 3 – 8 showed no anti‐HIV activities.  相似文献   

3.
The two new polyoxygenated spirostanol bisdesmosides 1 and 2 and the new trisdesmoside 3 , named hellebosaponin A ( 1 ), B ( 2 ), and C ( 3 ), respectively, were isolated from the MeOH extract of the rhizomes of Helleborus orientalis. The structures of the new compounds were elucidated as (1β,3β,23S,24S)‐21‐(acetyloxy)‐24‐[(β‐D ‐fucopyranosyl)oxy]‐3,23‐dihydroxyspirosta‐5,25(27)‐dien‐1‐yl O‐β‐D ‐apiofuranosyl‐(1→3)‐O‐(4‐O‐acetyl‐α‐L ‐rhamnopyranosyl)‐(1→2)‐O‐[β‐D ‐xylopyranosyl‐(1→3)]‐α‐L ‐arabinopyranoside ( 1 ), (1β,3β,23S,24S)‐ 21‐(acetyloxy)‐24‐{[Oβ‐D ‐glucopyranosyl‐(1→4)‐β‐D ‐fucopyranosyl]oxy}‐3,23‐dihydroxyspirosta‐5,25(27)‐dien‐1‐yl Oβ‐D ‐apiofuranosyl‐(1→3)‐O‐(4‐O‐acetyl‐α‐L ‐rhamnopyranosyl)‐(1→2)‐O‐[β‐D ‐xylopyranosyl‐(1→3)]‐ α‐L ‐arabinopyranoside ( 2 ), and (1β,3β,23S,24S)‐24‐[(β‐D ‐fucopyranosyl)oxy]‐21‐{[Oβ‐D ‐glucopyranosyl‐(1→2)‐β‐D ‐galactopyranosyl]oxy}‐3,23‐dihydroxyspirosta‐5,25(27)‐dien‐1‐yl Oβ‐D ‐apiofuranosyl‐(1→3)‐O‐(4‐O‐acetyl‐α‐L ‐rhamnopyranosyl)‐(1→2)‐O‐[β‐D ‐xylopyranosyl‐(1→3)]‐α‐L ‐arabinopyranoside ( 3 ), respectively, on the basis of detailed spectroscopic studies and chemical evidence.  相似文献   

4.
Phytochemical analyses were carried out on the rhizomes of Clintonia udensis (Liliaceae) with particular attention paid to the steroidal glycoside constituents, resulting in the isolation of three new polyhydroxylated spirostanol glycosides, named clintonioside A ( 1 ), B ( 2 ), and C ( 3 ). On the basis of their spectroscopic data, including 2D‐NMR spectroscopy, in combination with acetylation and hydrolytic cleavage, the structures of 1 – 3 were determined to be (1β,3β,23S,24S,25R)‐1,23,24‐trihydroxyspirost‐5‐en‐3‐yl Oβ‐D ‐glucopyranosyl‐(1→4)‐O‐[α‐L ‐rhamnopyranosyl‐(1→2)]‐β‐D ‐glucopyranoside ( 1 ), (1β,3β,23S,24S)‐3,21,23,24‐tetrahydroxyspirosta‐5,25(27)‐dien‐1‐yl Oα‐L ‐rhamnopyranosyl‐(1→2)‐O‐[β‐D ‐xylopyranosyl‐(1→3)]‐β‐D ‐glucopyranoside ( 2 ), and (1β,3β,23S,24S)‐21‐(acetyloxy)‐24‐[(6‐deoxy‐β‐D ‐gulopyranosyl)oxy]‐3,23‐dihydroxyspirosta‐5,25(27)‐dien‐1‐yl Oα‐L ‐rhamnopyranosyl‐(1→2)‐O‐[β‐D ‐xylopyranosyl‐(1→3)]‐β‐D ‐glucopyranoside ( 3 ).  相似文献   

5.
Three new steroidal saponins, (25R)‐ruscogenin‐3‐yl α‐L ‐rhamnopyranosyl‐(1→2)‐[β‐D ‐xylopyranosyl‐(1→4)]‐β‐D ‐glucopyranoside ( 1 ), diosgenin‐3‐yl 2‐O‐acetyl‐α‐L ‐rhamnopyranosyl‐(1→2)‐[β‐D ‐xylopyranosyl‐(1→4)]‐β‐D ‐glucopyranoside ( 2 ), and pennogenin‐3‐yl 2‐O‐acetyl‐α‐L ‐rhamnopyranosyl‐(1→2)‐[β‐D ‐xylopyranosyl‐(1→4)]‐β‐D ‐glucopyranoside ( 3 ) were isolated from the fibrous roots of Ophiopogon japonicus (Thunb .) Ker‐Gawl . Their structures were determined by spectroscopic methods including IR, HR‐ESI‐MS, and 1D‐ and 2D‐NMR. All of these three steroidal saponins exhibited weak cytotoxicities against Hela and Hep2 cell lines.  相似文献   

6.
Five new cardenolides and one new cardiac aglycone, i.e., (5α)‐sarmentogenin 3‐(α‐L ‐rhamnopyranoside) ( 1 ), (5α)‐sarmentogenin ( 2 ), 11‐oxouzarigenin 3‐(α‐L ‐rhamnopyranoside) ( 3 ), (5α)‐gitoxigenin 3‐(α‐L ‐rhamnopyranoside) ( 4 ), (5α)‐oleandrigenin 3‐(α‐L ‐rhamnopyranoside) ( 5 ), and (5α)‐oleandrigenin 3‐[β‐D ‐glucopyranosyl‐(1 → 4)‐α‐L ‐rhamnopyranoside] ( 6 ), together with two known cardenolides, i.e., frugoside (= (3β,5α)‐3‐[(6‐deoxy‐β‐D ‐allopyranosyl)oxy]‐14,19‐dihydroxycard‐20(22)‐enolide) and (17α)‐ascleposide (= (3β,5α,17α)‐3‐[(6‐deoxy‐α‐D ‐allopyranosyl)oxy]‐14‐hydroxycard‐20(22)‐enolide), were isolated from the stem bark of Trewia nudiflora L. (Euphorbiaceae) collected in Xishuangbanna, Yunnan Province, China. Their structures were established by spectroscopic studies. Cardenolides were first found in the genus Trewia (Euphorbiaceae).  相似文献   

7.
Two new kaempferol glycosides, 5‐hydroxy‐2‐(4‐hydroxyphenyl)‐4‐oxo‐7‐(α‐L ‐rhamnopyranosyloxy)‐4H‐chromen‐3‐yl 2‐O‐acetyl‐3‐Oβ‐D ‐glucopyranosyl‐α‐L ‐rhamnopyranoside ( 1 ) and 5‐hydroxy‐2‐(4‐hydroxyphenyl)‐4‐oxo‐7‐(α‐L ‐rhamnopyranosyloxy)‐4H‐chromen‐3‐yl β‐D ‐glucopyranosyl‐(1→2)‐6‐O‐[(2E)‐3‐(4‐hydroxyphenyl)prop‐2‐enoyl]‐β‐D ‐glucopyranosyl‐(1→2)‐β‐D ‐glucopyranoside ( 2 ), along with ten known compounds, were isolated from the 95% EtOH extract of the whole plant of Androsace umbellata. The structures of the new glycosides were determined on the basis of detailed spectroscopic analyses, including 1D‐ and 2D‐NMR, MS, and chemical methods.  相似文献   

8.
(3β,7β)‐7‐Hydroxylup‐20(29)‐en‐3‐yl hexadecanoate ( 1 ), a new lupeol‐based triterpenoid ester, along with sixteen known compounds, 7β,15α‐dihydroxylup‐20(29)‐ene‐3βO‐palmitate ( 2 ), lupeol palmitate ( 3 ), lupeol ( 4 ), 3‐oxolup‐20(29)‐ene ( 5 ), ursolic acid ( 6 ), cycloeucalenol ( 7 ), stigmasterol ( 8 ), β‐sitosterol ( 9 ), β‐daucosterol ( 10 ), quercetin ( 11 ), quercetin 3‐Oα‐L ‐arabinoside ( 12 ), quercetin 3‐Oα‐L ‐rhamnoside ( 13 ), catechin ( 14 ), gitoxigenin 3‐Oα‐L ‐rhamnoside ( 15 ), gitoxigenin 3‐Oα‐D ‐glucoside ( 16 ), and digitoxigenin 3‐Oα‐L ‐rhamnoside ( 17 ), was isolated from the leaves of the Southern China mistletoe, Scurrula parasitica Linn parasitic on Nerium indicum Mill . Their structures were elucidated by spectroscopic analyses, including 2D‐NMR techniques. Cytotoxic activities of compounds 1 – 7 and 11 – 17 were evaluated against three cancer cell lines, PANC‐1, HL‐60, and SGC‐7901, revealing that compounds 4, 6, 11 , and 15 – 17 exhibited effective cytotoxicities, while others were inactive. A structure? activity relationship study of compounds 1 – 5 indicated that the 3‐OH group in lupeol‐based triterpenoids is essential for antitumor activity.  相似文献   

9.
Four new 9,10‐secocycloartane (=9,19‐cyclo‐9,10‐secolanostane) triterpenoidal saponins, named huangqiyenins G–J ( 1 – 4 , resp.), were isolated from Astragalus membranaceus Bunge leaves. The acid hydrolysis of 1 – 4 with 1M aqueous HCl yielded D ‐glucose, which was identified by GC analysis after treatment with L ‐cysteine methyl ester hydrochloride. The structures of 1 – 4 were established by detailed spectroscopic analysis as (3β,6α,10α,16β,24E)‐3,6‐bis(acetyloxy)‐10,16‐dihydroxy‐12‐oxo‐9,19‐cyclo‐9,10‐secolanosta‐9(11),24‐dien‐26‐yl β‐D ‐glucopyranoside ( 1 ), (3β,6a,10α,24E)‐3,6‐bis(acetyloxy)‐10‐hydroxy‐12,16‐dioxo‐9,19‐cyclo‐9,10‐secolanosta‐9(11),24‐dien‐26‐yl β‐D ‐glucopyranoside ( 2 ), (3β,6α,9α,10α,16β,24E)‐3,6‐bis(acetyloxy)‐9,10,16‐trihydroxy‐9,19‐cyclo‐9,10‐secolanosta‐11,24‐dien‐26‐yl β‐D ‐glucopyranoside ( 3 ), and (3β,6α,10α,24E)‐3,6‐bis(acetyloxy)‐10‐hydroxy‐16‐oxo‐9,19‐cyclo‐9,10‐secolanosta‐9(11),24‐dien‐26‐yl β‐D ‐glucopyranoside ( 4 ).  相似文献   

10.
Two novel echinocystic acid (=(3β,16α)‐3,16‐dihydroxyolean‐12‐en‐28‐oic acid) glycosides, foetidissimosides C ( 1 ), and D ( 2 ), along with new cucurbitane glycosides, i.e., foetidissimosides E/F ( 3 / 4 ) as an 1 : 1 mixture of the (24R)/(24S) epimers, were obtained from the roots of Cucurbita foetidissima. Their structures were elucidated by means of a combination of homo‐ and heteronuclear 2D‐NMR techniques (COSY, TOCSY, NOESY, ROESY, HSQC, and HMBC), and by FAB‐MS. The new compounds were characterized as (3β,16α)‐28‐{[Oβ‐D ‐glucopyranosyl‐(1→3)‐Oβ‐D ‐xylopyranosyl‐(1→4)‐O‐6‐deoxy‐α‐L ‐mannopyranosyl‐(1→2)‐α‐L ‐arabinopyranosyl]oxy}‐16‐hydroxy‐28‐oxoolean ‐12‐en‐3‐yl β‐D ‐glucopyranosiduronic acid ( 1 ), (3β,16α)‐16‐hydroxy‐28‐oxo‐28‐{{Oβ‐D ‐xylopyranosyl‐(1→3)‐O‐[β‐D ‐xylopyranosyl‐(1→4)]‐O‐6‐deoxy‐α‐L ‐mannopyranosyl‐(1→2)‐α‐L ‐arabinopyranosyl}oxy}olean‐12‐en‐3‐yl β‐D ‐glucopyranosiduronic acid ( 2 ), and (3β,9β,10α,11α,24R)‐ and (3β,9β,10α,11α,24S)‐25‐(β‐D ‐glucopyranosyloxy)‐9‐methyl‐19‐norlanost‐5‐en‐3‐yl 2‐Oβ‐D ‐glucopyranosyl‐β‐D ‐glucopyranoside ( 3 and 4 , resp.).  相似文献   

11.
From the bulbils of Dioscorea bulbifera L. var. sativa, three new clerodane diterpenoids, bafoudiosbulbin C (=methyl (2β,8α,12S)‐17‐oxo‐2,19 : 8,19 : 12,17 : 15,16‐tetraepoxycleroda‐3,13(16), 14‐triene‐18‐carboxylate; 1 ), bafoudiosbulbin D (=methyl (2β,6β,12R)‐17,19‐dioxo‐2,19 : 6,17 : 8,12 : 15,16‐tetraepoxycleroda‐13(16),14‐diene‐18‐carboxylate; 2 ), and bafoudiosbulbin E (=methyl (2β,3α,4α,6β,12R)‐17,19‐dioxo‐2,19 : 3,4 : 6,17 : 8,12 : 15,16‐pentaepoxycleroda‐13(16),14‐diene‐18‐carboxylate; 3 ) were isolated, together with the known compounds bafoudiosbulbins A and B, 3‐Oβ‐D ‐glucopyranosyl‐β‐sitosterol, and 6′‐stearoyl‐3‐Oβ‐D ‐glucopyranosyl‐β‐sitosterol. Their structures were established by high‐field NMR techniques (1H,1H‐COSY, 13C‐DEPT, HSQC, HMBC, and NOESY), MS analyses, as well as by comparison of their spectral data with those of related compounds.  相似文献   

12.
Three new kaempferol glycosides, kaempferol 3‐Oβ‐D ‐glucopyranosyl‐(1→6)‐β‐D ‐galactopyranosyl‐7‐Oα‐L ‐rhamnopyranoside ( 1 ), kaempferol 3‐O‐β‐D ‐galactopyranosyl‐7‐Oβ‐D ‐glucopyranosyl‐(1→3)‐α‐L ‐rhamnopyranoside ( 2 ), and kaempferol 3‐Oβ‐D ‐glucopyranosyl‐(1→6)‐β‐D ‐galactopyranosyl‐7‐Oβ‐D ‐glucopyranosyl‐(1→3)‐α‐L ‐rhamnopyranoside ( 3 ), were isolated from the whole herbs of Cardamine leucantha, along with three known kaempferol glycosides, kaempferol 7‐Oα‐L ‐rhamnopyranoside, kaempferitrin, and kaempferol 3‐Oβ‐D ‐galactopyranosyl‐7‐Oα‐L ‐rhamnopyranoside. Their structures were elucidated on the basis of spectroscopic methods.  相似文献   

13.
A new triterpene, (3β,12β)‐taraxast‐20(30)‐ene‐3,12‐diol (=(3β,12β,18α,19α)‐urs‐20(30)‐ene‐3,12‐diol; 1 ), together with the known compounds ursolic acid, α‐amyrin, β‐amyrin, (2α,3β)‐2,3‐dihydroxyursa‐5,12‐dien‐28‐oic acid, (2α,3β)‐2,3,23‐trihydroxyurs‐12‐en‐28‐oic acid, (2S,3S,4R,8Z)‐1‐O‐(β‐D ‐glucopyranosyl)‐2‐{[(2R)‐2‐hydroxydocosanoyl]amino}octadec‐8‐ene‐1,3,4‐triol, and (2S,3S,4R,8Z)‐1‐O‐(β‐D ‐glucopyranosyl)‐2‐[(palmitoyl)amino]octadec‐8‐ene‐1,3,4‐triol, and quercetin 3‐(β‐D ‐glucopyranoside) were isolated from the leaves of Craibiodendron yunnanense. Their structures were established on the basis of spectral evidence. The last four compounds were identified for the first time in this plant.  相似文献   

14.
Three new dammarane‐type triterpene saponins, 1 – 3 , together with three known compounds, 4 – 6 , were isolated from the aerial parts of Gynostemma pentaphyllum (Thunb.) Makino . By means of chemical and spectroscopic methods, their structures were established as (20S)‐3β,20,21‐trihydroxydammara‐23,25‐diene 3‐O‐[α‐L ‐rhamnopyranosyl‐(1→2)] [β‐D ‐xylopyranosyl‐(1→3)]‐β‐D ‐glucopyranosyl‐21‐Oβ‐D ‐glucopyranoside ( 1 ), (20R,23R)‐3β,20‐dihydroxy‐19‐oxodammar‐24‐en‐21‐oic acid 21,23‐lactone 3‐O‐[α‐L ‐rhamnopyranosyl‐(1→2)] [β‐D ‐xylopyranosyl‐(1→3)]‐α‐L ‐arabinopyranoside ( 2 ), and (21S,23S)‐3β,20ξ,21,26‐tetrahydroxy‐19‐oxo‐21,23‐epoxydammar‐24‐ene 3‐O‐[α‐L ‐rhamnopyranosyl‐(1→2)] [β‐D ‐xylopyranosyl‐(1→3)]‐α‐L ‐arabinopyranoside ( 3 ).  相似文献   

15.
The new rearranged‐abietane diterpene 1 , the four new triterpenoids 2 – 5 , and the new aminoethylphenyl oligoglycoside 6 , besides 19 known compounds, were isolated from the roots of Schnabelia tetradonta, a Chinese endemic herb. The structures of the new compounds were elucidated on the basis of spectroscopic evidence as 12,17‐epoxy‐11,14,16‐trihydroxy‐17(15→16)‐abeo‐abieta‐8,11,13,15‐tetraen‐7‐one ( 1 ), 21β‐(β‐D ‐glucopyranosyloxy)‐2α,3α‐dihydroxyolean‐12‐en‐28‐oic acid ( 2 ), 2β,3β,16β‐trihydroxy‐15‐oxo‐28‐norolean‐12‐en‐23‐oic acid ( 3 ), 3β‐[(4‐O‐acetyl‐β‐D ‐glucopyranuronosyl)oxy]‐2β,16β‐dihydroxy‐28‐norolean‐15‐oxo‐12‐en‐23‐oic acid ( 4 ), 3β‐[(4‐O‐acetyl‐6‐O‐methyl‐β‐D ‐glucopyranuronosyl)oxy]‐2β,16β‐dihydroxy‐15‐oxo‐28‐norolean‐12‐en‐23‐oic acid ( 5 ), and 4‐[2‐(acetylamino)ethyl]phenyl O‐6‐O‐[(Z)‐p‐methoxycinnamoyl]‐β‐D ‐glucopyranosyl‐(1→2)]‐O‐[β‐D ‐glucopyranosyl‐(1→3)]‐4‐O‐acetyl‐α‐L ‐rhamnopyranoside ( 6 ), respectively.  相似文献   

16.
A chemical investigation of Lysimachia christinae, a traditional Chinese medicine used as an effective conservative treatment for gall stones, hepatolithiasis, and urinary calculi, resulted in the isolation of two new flavonoids, myricetin 3,3′‐di‐α‐L ‐rhamnopyranoside ( 1 ) and quercetin 3,3′‐di‐α‐L ‐rhamnopyranoside ( 2 ), along with the five known flavonoids quercetin 3‐[Oα‐L ‐rhamnopyranosyl‐(1→2)‐β‐D ‐galactopyranoside], amentoflavone, hyperin, quercetin 3‐β‐D ‐glucopyranoside, and kaempferol 3‐α‐L ‐rhamnopyranoside. Amentoflavone was reported for the first time from the genus Lysimachia, and quercetin 3‐[Oα‐L ‐rhamopyranosyl‐(1→2)‐β‐D ‐galactopyranoside] was isolated from this plant for the first time. The structures of the new compounds were elucidated on the basis of their chemical reactions and extensive spectroscopic analyses, including UV, mass, and NMR spectra.  相似文献   

17.
Four new eudesmane‐type sesquiterpene derivatives, 3β‐[(β‐D ‐glucopyranosyl)oxy]‐11αH‐eudesm‐4(14)‐en‐12,8β‐olide ( 1 ), (3β)‐eudesma‐4(14),11(13)‐diene‐3,12‐diol ( 2 ), 3β‐[(β‐D ‐glucopyranosyl)oxy]eudesma‐4(14),11(13)‐dien‐12‐ol ( 3 ), and 3β‐[(β‐D ‐glucopyranosyl)oxy]eudesm‐4(14)‐en‐11‐ol ( 4 ), together with the known (3β)‐eudesm‐4(14)‐ene‐3,11‐diol ( 5 ) were isolated from Saussurea conica, and their structures were elucidated both spectroscopically and by chemical methods.  相似文献   

18.
In search for bioactive compounds from the flower of Datura metel L., three new withanolide glucosides, namely baimantuoluosides A, B, and C ( 1 – 3 , resp.) were isolated. Enzymatic hydrolysis of 1 – 3 afforded the corresponding aglycones 1a, 2a , and 3a , respectively. The structures of the new compounds were elucidated as (5α,6α,7α,12β,22R)‐5,12‐dihydroxy‐1,26‐dioxo‐6,7 : 22,26‐diepoxyergosta‐2,24‐dien‐27‐yl β‐D ‐glucopyranoside ( 1 ), (5α,6α,7α,12α,22R)‐5,12‐dihydroxy‐1,26‐dioxo‐6,7 : 22,26‐diepoxyergosta‐2,24‐dien‐27‐yl β‐D ‐glucopyranoside ( 2 ), (5α,6α,7α,22R)‐5‐hydroxy‐1,26‐dioxo‐6,7 : 22,26‐diepoxyergosta‐2,24‐dien‐27‐yl β‐D ‐glucopyranoside ( 3 ) on the basis of chemical and physicochemical evidence, and are further confirmed by the structure determination by X‐ray diffraction of withanolide aglycone 1a .  相似文献   

19.
Three new triterpenoid saponins, xuedanglycosides A–C ( 1 – 3 , resp.), along with six known ones, were isolated from the rhizomes of Hemsleya chinensis. By detailed analysis of the NMR spectra, by chemical methods, and by comparison with spectral data of known compounds, the structures of new compounds were determined to be 16α,23α‐epoxy‐2β,3α,20β‐trihydroxy‐10α,23α‐cucurbita‐5,24‐dien‐11‐on‐2‐yl β‐D ‐glucopyranoside ( 1 ), 2β,3α,16α,20β‐tetrahydroxycucurbita‐5,25‐diene‐11,22‐dion‐2‐yl β‐D ‐glucopyranoside ( 2 ), and oleanolic acid 28‐Oβ‐xylopyranosyl‐(1→6)‐Oβ‐glucopyranoside ( 3 ). In addition, hemslecin A 2‐Oβ‐D ‐glucopyranoside ( 6 ), hemsamabilinin B ( 7 ), and hemslonin A ( 9 ) were obtained for the first time from this plant.  相似文献   

20.
Two new iridoid glycosides, named scyphiphorins A ( 1 ) and B ( 2 ), together with four known compounds, geniposidic acid (=(1S,4aS,7aS)‐1‐(β‐D ‐glucopyranosyloxy)‐1,4a,5,7a‐tetrahydro‐7‐(hydroxymethyl)cyclopenta[c]pyran‐4‐carboxylic acid; 3 ), 4‐(4‐hydroxy‐3‐methoxybenzyl)butan‐2‐one, oleanolic acid (=(3β)‐3‐hydroxyolean‐12‐en‐28‐oic acid), and stigmasterol β‐D ‐glucoside (=(3β,22E)‐stigmasta‐5,22‐dien‐3‐yl β‐D ‐glucopyranoside), were isolated for the first time from the stem bark of a Chinese mangrove, Scyphiphora hydrophyllacea Gaertn . f. The structures of compounds 1 and 2 were determined as 10‐O‐benzoylgeniposidic acid and 10‐O‐[(2E,6R)‐8‐hydroxy‐2,6‐dimethyl‐1‐oxooct‐2‐en‐1‐yl]geniposidic acid, respectively, on the basis of spectroscopic data and chemical methods, including 2D NMR techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号