首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Preparation, Properties, and Molecular Structures of Dimethylmetal Alkoxides and Amides of Aluminium and Gallium Dimethylaluminium‐ ( 1 ) and Dimethylgallium‐o‐methoxyphenyl‐1‐ethoxide ( 2 ) were obtained by reaction of Me3Al and Me3Ga respectively with o‐Methoxyphenyl‐1‐ethanol in n‐pentane. Dimethylaluminium‐ ( 3 ) and dimethylgallium‐o‐methoxyphenyl‐2‐ethylamide ( 4 ) were prepared by treatment of Me2AlCl and Me2GaCl respectively with Lithium‐o‐methoxyphenyl‐2‐ethylamide. Trimethylgallium‐o‐methoxyphenylmethylamine‐Adduct ( 5 ) was isolated using reaction of Me3Ga with the corresponding amine. The compounds were characterised by 1H‐, 13C‐, and 27Al n.m.r. spectroscopy. The molecular structures of 2 and 5 were determined by X‐ray diffraction. Compounds 1 – 4 form brigded dimeric molecules. The bond distances of the central Ga2O2 ring in 2 correspond to those of compounds of similar structure.  相似文献   

2.
The reactions of enantiomerically pure (1R, 2S)‐(+)‐cis‐1‐aminoindan‐2‐ol, (1S, 2R)‐(‐)‐cis‐1‐aminoindan‐2‐ol, and racemic trans‐1‐aminoindan‐2‐ol with trimethylaluminum, ‐gallium, and ‐indium produce the intramolecularly stabilized, enantiomerically pure dimethylmetal‐1‐amino‐2‐indanolates (1R, 2S)‐(+)‐cis‐Me2AlO‐2‐C*HC7H6‐1‐C*HNH2 ( 1 ), (1S, 2R)‐(‐)‐cis‐Me2AlO‐2C*HC7H6‐1‐C*HNH2 ( 2 ), (1R, 2S)‐(+)‐cis‐Me2GaO‐2‐C*HC7H6‐1‐C*HNH2 ( 3 ), (1R, 2S)‐(+)‐cis‐Me2InO‐2‐C*HC7H6‐1‐C*HNH2 ( 4 ), (1S, 2R)‐(‐)‐cis‐Me2InO‐2‐C*HC7H6‐1‐C*HNH2 ( 5 ), and racemic (+/‐)‐trans‐Me2InO‐2‐C*HC7H6‐1‐C*HNH2 ( 6 ). The compounds were characterized by 1H NMR, 13C NMR, 27Al NMR and mass spectra as well as 1 and 3 to 6 by determination of their crystal and molecular structures. The dynamic dissociation/association behavior of the coordinative metal‐nitrogen bond was studied by low temperature 1H NMR spectroscopy.  相似文献   

3.
Synthesis and Structure of Highly Functionalized 2, 3‐Dihydro‐1H‐1, 3, 2‐diazaboroles A series of differently substituted 2, 3‐dihydro‐1H‐1, 3, 2‐diazaboroles has been prepared by various methods. 1, 3‐Di‐tert‐butyl‐2‐trimethylsilylmethyl‐1H‐1, 3, 2‐diazaborole ( 7 ), 2‐isobutyl‐1, 3‐bis(1‐cyclohexylethyl)‐1H‐1, 3, 2‐diazaborole ( 8 ), 1, 3‐bis‐(1‐cyclohexylethyl)‐2‐trimethylsilylmethyl‐1H‐1, 3, 2‐diazaborole ( 9 ) 1, 3‐bis(1‐methyl‐1‐phenyl‐propyl)‐2‐trimethylsilylmethyl‐1H‐1, 3, 2diazaborole ( 10 ) and 2‐bromo‐1, 3‐bis(1‐methyl‐1‐phenyl‐propyl)‐1H‐1, 3, 2‐diazaborole ( 11 ) were formed by reaction of the corresponding 1, 4‐diazabutadienes with the boranes Me3SiCH2BBr2, iBuBBr2 and BBr3 followed by reduction of the resulting borolium salts [R1 = tBu, Me(cHex)CH, [Me(Et)Ph]C; R2 = Me3SiCH2, iBu, Br] with sodium amalgam. Treatment of 11 and 12 with silver cyanide afforded the 2‐cyano‐1, 3, 2‐diazaboroles 13 and 14 . An alternative route to compound 8 is based on the alkylation of 2‐bromo‐1, 3, 2‐diazaborole 12 with isobutyllithium. Equimolar amounts of 13 and isobutyllithium give rise to the formation of 15 . The new compounds were characterized by 1H‐, 13C‐, 11B‐NMR, IR and mass spectra. The molecular structures of 7 and meso ‐10 were confirmed by x‐ray structural analysis.  相似文献   

4.
Well‐defined polymethylene‐block‐polystyrene (PM‐b‐PS) diblock copolymers were synthesized via a combination of polyhomologation of ylides and reversible addition‐fragmentation chain‐transfer (RAFT) polymerization of styrene. Trithiocarbonate‐terminated polymethylenes (PM‐TTCB) (Mn = 1400 g mol?1; Mw/Mn = 1.09 and Mn = 2100 g mol?1; Mw/Mn = 1.20) were obtained via an esterification of S?1‐dodecyl‐S′‐(α,α′‐dimethyl‐α″‐acetate) trithiocarbonate with hydroxyl‐terminated polymethylene synthesized via polyhomologation of ylides followed by oxidation. Then, a series of PM‐b‐PS (Mn = 5500–34,000 g mol?1; Mw/Mn = 1.12–1.25) diblock copolymers were obtained by RAFT polymerization of styrene using PM‐TTCB as a macromolecular chain‐transfer agent. The chain structures of all the polymers were characterized by proton nuclear magnetic resonance (1H NMR), gel permeation chromatography, and Fourier transform infrared spectroscopy. The thiocarbonylthio end‐group of PM‐b‐PS was transformed into thiol group by aminolysis and confirmed by UV–vis spectroscopy. In addition, microfibers and microspheres of such diblock copolymers were fabricated by electrospinning process and observed by scanning electron microscopy (SEM). © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2892–2899  相似文献   

5.
From the aerial parts of Zygophyllum fabago, two new monosodium salts of sulfated derivatives of ursolic acid, along with two known quinovic acid glycosides were isolated. The structures of the new compounds were determined as (3β,4α)‐3,23,30‐trihydroxyurs‐20‐en‐28‐al 3,23‐di(sulfate) sodium salt (1 : 1) ( 1 ) and of (3β,4α)‐3,23,28‐trihydroxyurs‐20‐en‐30‐yl β‐D ‐glucopyranoside 3,23‐di(sulfate) sodium salt (1 : 1) ( 2 ) with the molecular formula C30H47NaO10S2 and C36H59NaO15S2, respectively. The structures of the known compounds were 3‐O‐(2‐O‐sulfo‐β‐D ‐quinovopyranosyl)quinovic acid 28‐β‐D ‐glucopyranosyl ester ( 3 ) and 3‐O‐(β‐D ‐glucopyranosyl)quinovic acid 28‐β‐D ‐glucopyranosyl ester ( 4 ) (quinovic acid=(3β)‐3‐hydroxyurs‐12‐ene‐27,28‐dioic acid). The structures of all these compounds were determined by using 1D‐ and 2D‐NMR spectroscopic techniques.  相似文献   

6.
Three new cytotoxic ent‐kaurane diterpenoids, (1α,7α,14β)‐1,7,14‐trihydroxy‐ent‐kaur‐16‐en‐15,18‐dione ( 1 ), (1α,7α,14β)‐1,7,14,18,20‐pentahydroxy‐ent‐kaur‐16‐en‐15‐one ( 2 ), and (3β,7α,14β)‐3,7,14‐tris(acetyloxy)‐ent‐kaur‐16‐en‐15‐one ( 3 ), were isolated from Isodon weisiensis C. Y. Wu. Their structures were elucidated by spectroscopic methods, including 2D‐NMR techniques, and the crystal structure of 1 was determined by single‐crystal X‐ray‐diffraction analysis. The chosen crystal of 1 was orthorhombic, space group P212121, and there were two molecules with little difference in bond length and bond angle in the least‐asymmetry unit. Compounds 1–3 showed significant cytotoxic activities against human‐cancer cell lines Bel‐7402 and HO‐8910.  相似文献   

7.
The coordination polymers {[Cd(o‐BDC‐Cl4)(H2O)2]·EtOH}n ( 1 ) and {[Cd(p‐BDC‐Cl4)(DMF)]·H2O}n ( 2 ) (o‐BDC‐Cl4 = tetrachlorophthalate and p‐BDC‐Cl4 = tetrachloroterephthalate) were synthesized in different solvents using two isomeric tetrachlorinated benzenedicarboxylic acids. Complex 1 based on o‐BDC‐Cl4 features an extremely rare 2D trinodal (3,4,6)‐connected network constructed by the combination of 1D [Cd‐H2O]n chains and 1D [Cd2(o‐BDC‐Cl4)2]n loop‐like motifs. Complex 2 based on p‐BDC‐Cl4 has a 3D framework and shows a uninodal 4‐connected sra topology. Complexes 1 and 2 were characterized by elemental analyses, IR spectroscopy, single‐crystal X‐ray diffraction and thermogravimetric (TG) analyses. The photoluminescence of 1 and 2 were investigated in the solid state at room temperature.  相似文献   

8.
Crystals of the bis(tert‐butyl)silylene (DTBS) derivatives of the tartaric acids were synthesized from D ‐, L ‐, rac‐, and meso‐tartaric acid and DTBS bis(trifluoromethanesulfonate): two polymorphs of Si2tBu4(L ‐Tart1,2;3,4H–4) (L ‐ 1a and L ‐ 1b ), the mirror image of the denser modification (D ‐ 1b ) as well as the racemate ( 2 ), and the meso analogue Si2tBu4(meso‐Tart1,3;2,4H–4) ( 3 ). The structures were determined by single‐crystal X‐ray diffraction. The threo‐configured D ‐ and L ‐ (and rac‐) tartrates were coordinated by two tBu2Si units forming five‐membered chelate rings, whereas the erythro‐configured meso‐tartrate formed six‐membered chelate rings. The new compounds were analyzed by NMR techniques, including 29Si NMR spectroscopy, and single‐crystal X‐ray crystallography.  相似文献   

9.
A series of RuIV–alkylidenes based on unsymmetrical imidazolin‐2‐ylidenes, that is, [RuCl2{1‐(2,4,6‐trimethylphenyl)‐3‐R‐4,5‐dihydro‐(3H)‐imidazol‐1‐ylidene}(CHPh)(pyridin)] (R=CH2Ph ( 5 ), Ph ( 6 ), ethyl ( 7 ), methyl ( 8 )), have been synthesized. These and the parent initiators [RuCl2(PCy3){1‐(2,4,6‐trimethylphenyl)‐3‐R‐4,5‐dihydro‐(3H)‐imidazol‐1‐ylidene}(CHC6H5)] (R=CH2C6H5 ( 1 ), C6H5 ( 2 ), ethyl ( 3 )) were used for the alternating copolymerization of norborn‐2‐ene (NBE) with cis‐cyclooctene (COE) and cyclopentene (CPE), respectively. Alternating copolymers, that is, poly(NBE‐alt‐COE)n and poly(NBE‐alt‐CPE)n containing up to 97 and 91 % alternating diads, respectively, were obtained. The copolymerization parameters of the alternating copolymerization of NBE with CPE under the action of initiators 1 – 3 and 5 – 8 were determined by using both a zero‐ and first‐order Markov model. Finally, kinetic investigations using initiators 1 – 3 , 6 , and 7 were carried out. These revealed that in contrast to the 2nd‐generation Grubbs‐type initiators 1 – 3 the corresponding pyridine derivatives 6 and 7 represent fast and quantitative initiating systems. Hydrogenation of poly(NBE‐alt‐COE)n yielded a fully saturated, hydrocarbon‐based polymer. Its backbone can formally be derived by 1‐olefin polymerization of CPE (1,3‐insertion) followed by five ethylene units and thus serves as an excellent model compound for 1‐olefin polymerization‐derived copolymers.  相似文献   

10.
The reactions of (R)‐ and (S)‐4‐(1‐carboxyethoxy)benzoic acid (H2CBA) with 1,3‐bis(2‐methyl‐1H‐imidazol‐1‐yl)benzene (1,3‐BMIB) ligands afforded a pair of homochiral coordination polymers (CPs), namely, poly[[[μ‐1,3‐bis(2‐methyl‐1H‐imidazol‐1‐yl)benzene][μ‐(S)‐4‐(1‐carboxylatoethoxy)benzoato]zinc(II)] monohydrate], {[Zn(C10H8O5)(C14H14N4)]·H2O}n or {[Zn{(S)‐CBA}(1,3‐BMIB)]·H2O}n ( 1‐L ), and poly[[[μ‐1,3‐bis(2‐methyl‐1H‐imidazol‐1‐yl)benzene][μ‐(R)‐4‐(1‐carboxylatoethoxy)benzoato]zinc(II)] monohydrate] ( 1‐D ). Three kinds of helical chains exist in compounds 1‐D and 1‐L , which are constructed from ZnII atoms, 1,3‐BMIB ligands and/or CBA2? ligands. When the as‐synthesized crystals of 1‐L and 1‐D were further heated in the mother liquor or air, poly[[μ‐1,3‐bis(2‐methyl‐1H‐imidazol‐1‐yl)benzene][μ‐(S)‐4‐(1‐carboxylatoethoxy)benzoato]zinc(II)], [Zn(C10H8O5)(C14H14N4)]n or [Zn{(S)‐CBA}(1,3‐BMIB)]n ( 2‐L ), and poly[[μ‐1,3‐bis(2‐methyl‐1H‐imidazol‐1‐yl)benzene][μ‐(R)‐4‐(1‐carboxylatoethoxy)benzoato]zinc(II)] ( 2‐D ) were obtained, respectively. The single‐crystal structure analysis revealed that 2‐L and 2‐D only contained one type of helical chain formed by ZnII atoms and 1,3‐BMIB and CBA2? ligands, which indicated that the helical chains were reconstructed though solid‐to‐solid transformation. This result not only means the realization of helical transformation, but also gives a feasible strategy to build homochiral CPs.  相似文献   

11.

Free radical copolymerization of N‐vinyl‐2‐pyrrolidone with 2‐ethoxyethyl methacrylates was carried out with 2,2′‐azobisisobutyronotrile as an initiator in 1,4‐dioxane. The resulting copolymer was characterized by FTIR, H1‐NMR and C13‐NMR spectroscopic techniques thermal properties of copolymer were determined by DSC and TGA. The reactivity ratios of the monomers were computed by the Fineman‐Rose (F‐R), Kelen‐Tudos (K‐T) and extended Kelen‐Tudos (EK‐T) method at lower conversion, using the data obtained from both FTIR and elemental analysis studies; the results are in good agreement with each other. The average reactivity ratio, Alfrey‐Price Q and e values were found to be r 1=0.769, r 2=0.266 and Q 1=0.0859, e 1=0.4508, respectively for NVP/EOEMA copolymer. The distribution of monomer sequence along the copolymer chain was calculated using a statistical method based on obtained reactivity ratio. The number average molecular weight and polydispersity were determined by GPC.  相似文献   

12.
Pharmaceutical cocrystals are crystalline solids formed by an active pharmaceutical ingredient and a cocrystal former. The cocrystals 2,6‐diaminopyridine (DAP)–piracetam [PIR; systematic name: 2‐(2‐oxopyrrolidin‐1‐yl)acetamide] (1/1), C5H7N3·C6H10N2O2, (I), and 2,6‐diaminopyridine–theophylline (TEO; systematic name: 1,3‐dimethyl‐7H‐purine‐2,6‐dione) (1/1), C5H7N3·C7H8N4O2, (II), were prepared by the solvent‐assisted grinding method and were characterized by IR spectroscopy and powder X‐ray diffraction. Cocrystal (I) crystallized in the orthorhombic space group Pbca and showed a 1:1 stoichiometry. The DAP and PIR molecules are linked by an N—H…O hydrogen‐bond interaction. Self‐assembly of PIR molecules forms a sheet of C (4) and C (7) chains. Cocrystal (II) crystallized in the monoclinic P 21/c space group and also showed a 1:1 stoichiometry. The DAP and TEO molecules are connected by N—H…N and N—H…O hydrogen bonds, forming an R 22(9) heterosynthon. A bidimensional supramolecular array is formed by interlinked DAP–TEO tetramers, producing a two‐dimensional sheet.  相似文献   

13.
Racemic (1R*,2R*)‐1,2‐dihydroxy‐[1‐13C1]propylphosphonic acid and 1‐hydroxy‐[1‐13C1]acetone were synthesized and fed to R. huakuii PMY1. Alanine and a mixture of valine and methionine were isolated as their N‐acetyl derivatives from the cell hydrolysate by reversed‐phase HPLC and analyzed by NMR spectroscopy. It was found that the carbon atoms of the respective carboxyl groups were highly 13C‐labeled (up to 65 %). Hydroxyacetone is therefore considered an obligatory intermediate of the biodegradation of fosfomycin by R. huakuii PMY1.  相似文献   

14.
Four novel diorganotin(IV) complexes with general formula R2SnL (R = nBu, PhCH2) were synthesized from diorganotin dichlorides and binary Schiff‐bases (H2L) containing N2O2 donor atoms in the presence of sodium ethoxide. The Schiff bases were prepared by reactions of o‐phenylenediamine with 3‐tert‐butyl‐2‐hydroxy‐5‐methylbenzaldehyde (H2L1) and salicylaldehyde (H2L2) respectively. The compounds were characterized by elemental analyses, IR, and NMR spectroscopy. The solid‐state crystal structure of the compound nBu2SnL1 was determined by single‐crystal structural analysis.  相似文献   

15.
Three new dammarane monodesmosides, named notoginsenosides Ft1 ( 1 ), Ft2 ( 2 ), and Ft3 ( 3 ), together with three known ginsenosides, were obtained from a mild acidic hydrolysis of the saponins from notoginseng (Panax notoginseng (Burk .) F. H. Chen ) leaves. Their structures were elucidated to be (3β,12β,20R)‐12,20‐dihydroxydammar‐24‐en‐3‐yl O‐β‐D ‐xylopyranosyl‐(1 → 2)‐O‐β‐D ‐glucopyranosyl‐(1 → 2)‐β‐D ‐glucopyranoside ( 1 ), (3β,12β)‐12,20,25‐trihydroxydammaran‐3‐yl O‐β‐D ‐xylopyranosyl‐(1 → 2)‐O‐β‐D ‐glucopyranosyl‐(1 → 2)‐β‐D ‐glucopyranoside ( 2 ), and (3β,12β,24ξ)‐12,20,24‐trihydroxydammar‐25‐en‐3‐yl O‐β‐D ‐xylopyranosyl‐(1 → 2)‐O‐β‐D ‐glucopyranosyl‐(1 → 2)‐β‐D ‐glucopyranoside ( 3 ), by means of spectroscopic evidences. The known ginsenosides Rh2 and Rg3 4 – 6 were obtained as the major products from this acidic deglycosylation.  相似文献   

16.
3‐Alkyl/aryl‐3‐hydroxyquinoline‐2,4‐diones were reduced with NaBH4 to give cis‐3‐alkyl/aryl‐3,4‐dihydro‐3,4‐dihydroxyquinolin‐2(1H)‐ones. These compounds were subjected to pinacol rearrangement by treatment with concentrated H2SO4, resulting in 4‐alkyl/aryl‐3‐hydroxyquinolin‐2(1H)‐ones. When a benzyl (Bn) group was present in position 3 of the starting compound, its elimination occurred during the rearrangement, and the corresponding 3‐hydroxyquinolin‐2(1H)‐one was formed. The reaction mechanisms are discussed for all transformations. All compounds were characterized by IR, 1H‐ and 13C‐NMR spectroscopy, as well as mass spectrometry.  相似文献   

17.
Two organic–inorganic hybrid compounds have been prepared by the combination of the 4‐[(E)‐2‐(pyridin‐1‐ium‐2‐yl)ethenyl]pyridinium cation with perhalometallate anions to give 4‐[(E)‐2‐(pyridin‐1‐ium‐2‐yl)ethenyl]pyridinium tetrachloridocobaltate(II), (C12H12N2)[CoCl4], (I), and 4‐[(E)‐2‐(pyridin‐1‐ium‐2‐yl)ethenyl]pyridinium tetrachloridozincate(II), (C12H12N2)[ZnCl4], (II). The compounds have been structurally characterized by single‐crystal X‐ray diffraction analysis, showing the formation of a three‐dimensional network through X—H...ClnM (X = C, N+; n = 1, 2; M = CoII, ZnII) hydrogen‐bonding interactions and π–π stacking interactions. The title compounds were also characterized by FT–IR spectroscopy and thermogravimetric analysis (TGA).  相似文献   

18.
(1RS,2SR,3RS,4SR,5RS)‐2,4‐Dibenzoyl‐1,3,5‐triphenylcyclohexan‐1‐ol or (4‐hydroxy‐2,4,6‐triphenylcyclohexane‐1,3‐diyl)bis(phenylmethanone), C38H32O3, (1), is formed as a by‐product in the NaOH‐catalyzed synthesis of 1,3,5‐triphenylpentane‐1,5‐dione from acetophenone and benzaldehyde. Single crystals of the chloroform hemisolvate, C38H32O3·0.5CHCl3, were grown from chloroform. The structure has triclinic (P) symmetry. One diastereomer [as a pair of (1RS,2SR,3RS,4SR,5RS)‐enantiomers] of (1) has been found in the crystal structure and confirmed by NMR studies. The dichoromethane hemisolvate has been reported previously [Zhang et al. (2007). Acta Cryst. E 63 , o4652]. (1RS,2SR,3RS,4SR,5RS)‐2,4‐Dibenzoyl‐3,5‐bis(2‐methoxyphenyl)‐1‐phenylcyclohexan‐1‐ol or [4‐hydroxy‐2,6‐bis(2‐methoxyphenyl)‐4‐phenylcyclohexane‐1,3‐diyl]bis(phenylmethanone), C40H36O5, (2), is also formed as a by‐product, under the same conditions, from acetophenone and 2‐methoxybenzaldehyde. Crystals of (2) have been grown from chloroform. The structure has orthorhombic (Pca21) symmetry. A diastereomer of (2) possesses the same configuration as (1). In both structures, the cyclohexane ring adopts a chair conformation with all bulky groups (benzoyl, phenyl and 2‐methoxyphenyl) in equatorial positions. The molecules of (1) and (2) both display one intramolecular O—H...O hydrogen bond.  相似文献   

19.
The reactions of thiocarbonyl compounds with cis‐2,3‐dimethyloxirane ( 1a ) in CH2Cl2 in the presence of BF3⋅Et2O or SnCl4 led to trans‐4,5‐dimethyl‐1,3‐oxathiolanes, whereas with trans‐2,3‐dimethyloxirane ( 1b ) cis‐4,5‐dimethyl‐1,3‐oxathiolanes were formed. With the stronger Lewis acid SnCl4, the formation of side‐products was also observed. In the case of 1,3‐thiazole‐5(4H)‐thione 2 , these side‐products are the corresponding 1,3‐thiazol‐5(4H)‐one 5 and the 1 : 2 adduct 8 (Schemes 2 – 4). Their formation can be rationalized by the decomposition of the initially formed spirocyclic 1,3‐oxathiolane and by a second addition onto the C=N bond of the 1 : 1 adduct, respectively. The secondary epimerization by inversion of the configuration of the spiro‐C‐atom (Schemes 5 – 7) can be explained by a Lewis‐acid‐catalyzed ring opening of the 1,3‐oxathiolane ring and subsequent ring closure to the thermodynamically more stable isomer (Scheme 12). In the case of 2,2,4,4‐tetramethyl‐3‐thioxocyclobutanone ( 20 ), apart from the expected spirocyclic 1,3‐oxathiolanes 21 and 23 , dispirocyclic 1 : 2 adducts were formed by a secondary addition onto the C=O group of the four‐membered ring (Schemes 9 and 10).  相似文献   

20.
Four ZnII/CdII coordination polymers (CPs) based on 2‐(4‐carboxy‐phenyl)imidazo[4, 5‐f]‐1, 10‐phenanthroline (HNCP) and different derivatives of 5‐R‐1, 3‐benzenedicarboxylate (5‐R‐1, 3‐BDC) (R = NO2, H, OH), [Zn(HNCP)(5‐NO2‐1, 3‐BDC)]n ( 1 ), [Cd(HNCP)(5‐NO2‐1, 3‐BDC)]n ( 2 ), [Zn(HNCP)(1, 3‐BDC)(H2O)2]n ( 3 ), and {[Zn(HNCP)(5‐OH‐1, 3‐BDC)(H2O) · H2O}n ( 4 ) were synthesized under hydrothermal conditions. Compounds 1 – 4 were determined by elemental analyses, IR spectroscopy, and single‐crystal and powder X‐ray diffraction. Compounds 1 and 2 are isomorphous, presenting a 4‐connected uninodal (4, 4)‐sql 2D framework with threefold interpenetration, which are further extended into the three‐dimensional (3D) supramolecular architecture through π ··· π stacking interactions between the aryl rings of 5‐NO2‐1, 3‐BDC. Compared to compound 1 , 3 is obtained by using different reaction temperatures and metal‐ligand ratios, generating a 3D framework with –ABAB– fashion via π ··· π stacking interactions. Compound 4 is a 1D chain, which is further extended into a 3D supramolecular net by hydrogen bonds and π ··· π stacking interactions. The thermogravimetric and fluorescence properties of 1 – 4 were also explored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号