首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
旋流燃烧室内湍流燃烧速度场的实验研究   总被引:5,自引:1,他引:5  
普勇  张健  周力行 《力学学报》2003,35(3):341-347
建立了采用分级进风方式的同轴射流旋流燃烧室实验装置,选用耐高温的氧化铝细粉作为示踪粒子,实现了用三维激光粒子动态分析仪(PDA)测量湍流旋流燃烧的热态瞬时速度场.在分级进风比率和旋流致不同的3组实验工况条件下,得到了气体时均轴向与切向速度、轴向与切向脉动速度均方根值和轴向—切向脉动速度二阶关联量的分布.  相似文献   

2.
This paper is focused on the influence of the geometry of an interface seal gap on the aerodynamic and thermal performance of a rotor blade cascade. Tests are performed in a seven-blade cascade of a gas turbine high-pressure subsonic rotor at low Mach number (Ma2is = 0.3). To simulate some of the effects of rotation on the seal flow exiting the gap on a linear cascade environment, a number of fins are installed inside the slot, providing the coolant flow with an injection angle in the tangential direction. Tests are carried out at variable blowing conditions and different gap widths. Moreover, the influence of a radial misalignment between stator and rotor platforms is also investigated for variable injection conditions. The 3D flow field is surveyed by traversing a 5-hole miniaturized pressure probe in a downstream plane. Secondary flows velocities, loss coefficient and vorticity distributions are presented for the most relevant test conditions. Film cooling effectiveness distributions on the platform are obtained by Thermochromic Liquid Crystals technique. Results show that engine purge flow injection conditions have to be reproduced in the wind tunnel as close as possible, in order to get the correct blade aero-thermal performance.  相似文献   

3.
The mean wake of a three-bladed horizontal axis tidal stream turbine operating at maximum power coefficient has been investigated experimentally in a wide flume with width 11 times the depth, providing minimal restriction to transverse wake development and behaviour of large-scale horizontal turbulence structures. This is an important first stage for understanding wake interaction in turbine arrays and hence large-scale power generation. The rotor diameter has a typical value of 60% of the depth and the thrust coefficient is representative of a full-scale turbine. The shear layers originating from the rotor tip circumference show classic linear expansion downstream, with the rate of a plane shear layer vertically and 1.5 times that horizontally. These shear layers merge by around 2.5 diameters downstream forming a self-similar two-dimensional wake beyond eight diameters downstream with a virtual origin at two diameters downstream of the rotor plane. The spreading rate is somewhat less than that for solid bodies. The detailed velocity measurements made in the near wake show rotation and vorticity similar to that measured previously for wind and marine turbines although with asymmetry associated with bed and surface proximity. The longitudinal circulation in a transverse plane is conserved at about 1% of the swept circulation from the blade tip within two diameters downstream, the extent of detailed measurement. Turbines are usually designed using blade element momentum theory in which velocities at the rotor plane are characterised by axial and tangential induction factors and it is now possible to see how this idealisation relates to actual velocities. The axial induction factor corresponds to velocity deficits at 0.4–0.8 radii from the rotor axis across the near wake while the tangential induction factor at the rotor plane corresponds to velocities at 0.4–0.6 radii between 1–2 diameters downstream, indicating some general correspondence. For the two-dimensional self-similar far wake the two parameters defining the centreline velocity deficit and the transverse velocity profiles are likely to be insensitive to Reynolds number in turbulent conditions.  相似文献   

4.
A new type of ducted pulse thermal actuators with a high pulse repetition frequency is proposed to control wing buffeting at transonic flight velocities. Ducted pulse thermal actuators can operate up to frequencies of about 1 kHz, which is sufficient for controlling the majority of aerodynamic processes at high subsonic flow velocities. As the use of a pulse thermal actuator in the regime of tangential injection of a jet is less efficient from the energy viewpoint than in the regime of boundary layer suction, an ejector-type pulse thermal actuator is proposed for implementation of the suction regime.  相似文献   

5.
The instantaneous squeeze-film force between a heat exchanger tube and a support plate is studied. Based on a two-dimensional rectangular plate model, a short-sleeve squeeze-film model for arbitrary tube motion is developed. The instantaneous squeeze-film force is expressed in normal and tangential directions. The normal squeeze-film force consists of four nonlinear terms, the viscous, unsteady inertia, convective inertia and centripetal inertia terms. Three nonlinear terms, the viscous, unsteady inertia and Coriolis inertia terms, make up the tangential squeeze-film force. An experimental apparatus was developed in order to evaluate the theoretical models against measurements of a finite length squeeze film. A modified model based on the experimental data is obtained where the viscous terms for both directions are multiplied by the instantaneous Reynolds number. All the inertia terms are multiplied by constant coefficients. The modified model is in good agreement with most experimental cases for unsymmetrical linear motion, approximate circular motion and elliptical motion. The form of the modified model is suitable for predicting instantaneous squeeze-film forces in the simulation of heat exchanger tube vibration. Further work using different sized components and fluid properties is required in order to finalize coefficient values.  相似文献   

6.
The results of an experimental investigation of the local mean and fluctuating friction at the wall of a horizontal tube are presented for the case where a gas-liquid stream flows in the tube with a wide range of regime parameters. The electrodiffusion method is used for measuring the friction. Curves of the tangential stresses along the perimeter of the tube as well as along its length are constructed, permitting an objective determination of certain flow regimes. The experimental results are compared with those of the existing computational methods.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, pp. 101–108, March–April, 1973.  相似文献   

7.
The influence of the inter-electrode electric field of a single Dielectric Barrier Discharge (DBD) actuator on the performance of the device was investigated. The electric field of the actuator was manipulated through the variation of the angle between the electrodes of the actuators. Response forces generated by the plasma actuators were used as performance indicators for these devices. These forces were measured directly utilizing a highly sensitive balance scale. It was verified that depending on the orientation of the variation of the angle between the electrodes, the performance of the actuator may be decreased or increased when compared to a DBD on a flat dielectric plate more commonly investigated in literature. The manner in which the ionic wind flows over the actuators was also explored in the effort to elucidate the influence of the variation of the angle between the electrodes on the response force generated by the device. Results demonstrated that the response forces generated by the actuators may be improved by up to 50% compared to the actuator configuration on a flat dielectric plate commonly investigated. These results indicate the potential available to advance plasma technology by physically manipulating these devices to increase the performances of the actuators.  相似文献   

8.
Several studies have shown that a surface dielectric barrier discharge (DBD) may be used as an electrohydrodynamic (EHD) actuator in order to control airflows. In this paper, a parametric study has been performed in order to increase the velocity of the ionic wind induced by such actuators. The results show that an optimization of geometrical and electrical parameters allows us to obtain a time-averaged ionic wind velocity up to 8 m/s at 0.5 mm from the wall. Moreover, non-stationary measurements of the induced wind have been performed with synchronized records of current and voltage signals. These experiments show that the DBD actuator seems to generate a pulsed velocity at the same frequency than the applied high voltage.  相似文献   

9.
10.
Velocity distributions in a hydrocyclone separator   总被引:2,自引:0,他引:2  
 The internal three-dimensional flow field in a hydrocyclone was studied using laser velocimetry. Seven axial planes were investigated for three different inlet flow rates and three independent and different rejects rates. Results at each measurement plane showed that the measured tangential velocity profile behaves like a forced vortex at the region near the air core, and like a free vortex in the outer portion of the flow. The peak nondimensional tangential velocity decreases as the distance from the inlet region increases, however, the peak dimensional tangential velocity increases as the distance from the inlet region increases. The nondimensional peak tangential velocities are approximately equal for all of the flow rates. The magnitude of the tangential velocity increased in the inner forced vortex region as the rejects rate was increased. Backflows exist in the axial velocity profile near the inlet region, but these reversed flows disappear in the exit region. The dimensional vorticity is proportional to inlet flow rate and decreases with increasing rejects flow rates. Received: 27 February 2001/Accepted: 19 June 2001  相似文献   

11.
Impact friction test method by applying stress wave   总被引:1,自引:0,他引:1  
To understand the dynamic response of two bodies in contact, kinetic friction during impact presently is focused on. A new testing technique, which provides the normal and the tangential impact force independently, is developed by modifying the split Hopkinson pressure bar method. Normal and torsional stress wave propagation in a one-dimensional framework of an axial impact of an input tube on a rotating output tube is analyzed and is experimentally verified. Kinetic friction of brass was clarified at a high rate of sliding up to 5 m/s and is found to be almost constant independent of normal force and sliding velocity. The present technique provides direct measurement of kinetic friction with simple configuration and data analysis.  相似文献   

12.
应用一种合理考虑湍流一旋流相互作用及湍流脉动各向异性的新的代数ReynoldS应力模型,对环形通道内的湍流旋流流动进行了数值模拟.研究了旋流数、进口轴向速度和内外半径比等参数对环形通道内湍流旋流流动的影响,以及由此产生的流场变化对强化环形通道内传热的作用.  相似文献   

13.
This paper discusses experimental results from a multiple cavity test rig representative of a high pressure compressor internal air system. Measurements of the axial, tangential and radial velocity components are presented. These were made using a two component, laser doppler anemometry (LDA) system for a range of non-dimensional parameters representative of engine conditions (Re up to 4 × 106 and Rez up to 1.8 × 105). Tests were carried out for two different sizes of annular gap between the (non-rotating) drive shaft and the disc bores.

The axial and radial velocities inside the cavities are virtually zero. The size of the annular gap between disc bore and shaft has a significant effect on the radial distribution of tangential velocity. For the narrow annular gap (dh/b = 0.092), there is an increase of non-dimensional tangential velocity V/Ωr with radial location from V/Ωr < 1 at the lower radii to solid body rotation V/Ωr = 1 further into the cavity. For the wider annular gap (dh/b = 0.164), there is a decrease from V/Ωr > 1 at the lower radii to solid body rotation further into the cavity. An analysis of the frequency spectrum obtained from the tangential velocity measurements is consistent with a flow structure in the r plane consisting of pairs of contra rotating vortices.  相似文献   


14.
Boiling heat transfer measurements on a tube designed to yield the peripheral variation of heat transfer coefficient without interfering with the nucleation site density are presented. A variation of up to 25% around the tube is found with a maximum at the base. High speed cine photography was used to estimate the variation of mean bubble layer thickness and mean velocities with angle. An iterative heat balance around the periphery indicated a voidage decrease from about unity at the base to 0.3–0.6 at 90°  相似文献   

15.
Solutions are presented for the Stokes flow past finite axial assemblages of up to 9 spheres in an infinitely long cylindrical tube for a wide range of sphere spacings and sphere to cylinder diameter ratios. General solutions are constructed from the fundamental solutions to the governing equation in both the cylindrical and spherical coordinate systems. No-slip boundary conditions are enforced on the tube surface by constructing the Fourier transform of the general disturbance created by the spheres, as detected on the cylinder wall. The boundary conditions are then applied on the sphere surfaces by a previously developed series truncation technique.The calculated drag forces and zero-drag velocities demonstrate the interparticle interaction effects, the sphere-wall interactions, and the effects of wall damping on the inter-particle shielding phenomenon.  相似文献   

16.
In the field of unwinding dynamics, most of the researches so far have only considered the normal component of air resistance. In this research, the transient-state equation of motion that accurately contains all the boundary conditions at the guide-eyelet and lift-off points is derived. The transient-state equation of motion is derived from Hamilton??s principle for an open system, because the total mass of an unwinding cable varies continuously. The virtual work in Hamilton??s principle includes gravity, normal air resistance, and tangential air resistance. The air resistances are assumed to be proportional to the square of the normal and tangential velocities, and the effects of gravity and tangential air resistance on the unwinding cable are verified on the basis of the maximum balloon radius and the associated error. The results show that the effect of gravity and tangential air resistance on the maximum balloon radius is within 4?%, which is negligible.  相似文献   

17.
Cieszko  M.  Kubik  J. 《Transport in Porous Media》1999,34(1-3):319-336
The compatibility conditions matching macroscopic mechanical fields at the contact surface between fluid-saturated porous solid and adjacent bulk fluid are considered. Special attention is paid to the derivation of conditions for tangential components of the fluid flow velocities and to the verification of validity of the condition postulated by Beavers and Joseph. It has been shown that at the contact surface between two media, a dissipation of mechanical energy due to the fluid viscosity does exist and thus the form of a dissipation function has been proposed. It has been proven that this relation determines the form of two linear compatibility conditions derived for the tangential components of the relative fluid velocities and that these conditions describe the experimental results more precisely than the condition postulated by Beavers and Joseph.  相似文献   

18.
H. Olivier 《Shock Waves》1995,5(4):205-216
In a number of experimental and numerical publications a deviation has been found between the measured or computed stagnation point heat flux and that given by the theory of Fay and Riddell. Since the formula of Fay and Riddell is used in many applications to yield a reference heat flux for experiments performed in wind tunnels, for flight testing and numerical simulations, it is important that this reference heat flux is as accurate as possible. There are some shortcomings in experiments and numerical simulations which are responsible in some part for the deviations observed. But, as will be shown in the present paper, there is also a shortcoming on the theoretical side which plays a major role in the deviation between the theoretical and experimental/numerical stagnation point heat fluxes. This is caused by the method used so far to determine the tangential velocity gradient at the stagnation point. This value is important for the stagnation point heat flux, which so far has been determined by a simple Newtonian flow model. In the present paper a new expression for the tangential velocity gradient is derived, which is based on a more realistic flow model. An integral method is used to solve the conservation equations and, for the stagnation point, yields an explicit solution of the tangential velocity gradient. The solution achieved is also valid for high temperature flows with real gas effects. A comparison of numerical and experimental results shows good agreement with the stagnation point heat flux according to the theory of Fay and Riddell, if the tangential velocity gradient is determined by the new theory presented in this paper.This article was processed by the author using theLATEX style filepljour2 from Springer-Verlag.  相似文献   

19.
In this paper a basic, easily to multi-contact problems extendable, non-smooth approach is applied to analyze a bar striking an inelastic half-space. Coulomb contact is assumed and modeled by using set-valued Newtonian impact laws in normal as well as in tangential direction. The resulting linear complementarity problem contains all possible impact states and provides an instantaneous collision operator that respects all inequality constraints. This operator depends on the orientation of the bar and determines uniquely the post-impact velocities as functions of the pre-impact state. Different types of solutions may occur, including “stick’’ and “slip’’. In this context, stick and slip have to be understood as the two cases characterized by the tangential impulsive force as an element of either the set-valued or of the single-valued domain of the friction law. Depending on the choice of parameters, sign reversal of the tangential contact velocity is possible. For certain inertia properties and initial conditions, the collision operator yields an impact, even for initially vanishing normal contact velocity. This phenomenon is well known as the Painlevé paradox. The results obtained by this fully non-smooth rigid body approach are compared with those of other impact models, such as a lumped mass model with compliance elements, and a collision operator used for particle interactions in flows.AMR: 160A, 160B, 160Y, 292B, 292Y  相似文献   

20.
A numerical prediction for 3D swirling recirculating flow in an air‐jet spinning nozzle with a slotted‐tube is carried out with the realizable k–ε turbulence model. The effects of the groove parameters on the flow and yarn properties are investigated. The simulation results show that some factors, such as reverse flow upstream of the injector, vortex breakdown downstream of the injector, corner recirculation zone (CRZ) behind the step and vortex ring in the groove caused by the groove geometric variation, are significantly related to fluid flow, and consequently to yarn properties. With increasing groove height, the length of the CRZ increases, while the initial vortex ring in the groove decreases and a same direction rotating vortex forms in the bottom of the groove. Similarly, as the groove width increases, the extent of both vortex breakdown in downstream of the injectors and the vortex ring in the groove increases slightly, whereas the CRZ lengths in stream‐wise direction decrease. Some factors, such as the negative tangential velocities, the size of the vortex rings in the grooves and the CRZ, are constant for nozzles with different groove lengths. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号