首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper deals with a synchronization scheme for two fractional chaotic systems which is applied in image encryption. Based on Pecora and Carroll (PC) synchronization, fractional-order Lorenz-like system forms a master–slave configuration, and the sufficient conditions are derived to realize synchronization between these two systems via the Laplace transformation theory. An image encryption algorithm is introduced where the original image is encoded by a nonlinear function of a fractional chaotic state. Simulation results show that the original image is well masked in the cipher texts and recovered successfully through chaotic signals. Further, the cryptanalysis is conducted in detail through histogram, information entropy, key space and sensitivity to verify the high security.  相似文献   

2.
Contraction theory based stability analysis exploits the incremental behavior of trajectories of a system with respect to each other. Application of contraction theory provides an alternative way for stability analysis of nonlinear systems. This paper considers the design of a control law for synchronization of certain class of chaotic systems based on backstepping technique. The controller is selected so as to make the error dynamics between the two systems contracting. Synchronization problem with and without uncertainty in system parameters is discussed and necessary stability proofs are worked out using contraction theory. Suitable adaptation laws for unknown parameters are proposed based on the contraction principle. The numerical simulations verify the synchronization of the chaotic systems. Also parameter estimates converge to their true values with the proposed adaptation laws.  相似文献   

3.
This paper studies the problem of finite-time synchronization for the unified chaotic systems. We prove that global finite-time synchronization can be achieved for unified chaotic systems which have uncertain parameters. Simulation results for Lorenz, Lü and Chen chaotic systems are provided to illustrate the effectiveness of the proposed scheme.  相似文献   

4.
In this paper we revisit the Thau observer design and concern its application to the synchronization problem of two Lorenz name related systems in the master-slave formalism. The first one is the Lorenz-Stenflo system possessing a positively invariant ellipsoid while another one is the hyperchaotic Lorenz system possessing a positively invariant cylinder. Information about loci of these invariant domains is applied for the observer design. Further, we present one assertion related to one spectral inequality arisen in the process of assigning stable spectrum to the observer matrix and show its use in the observer design. We demonstrate the efficiency of synchronization schemes for the both of systems with help of numerical simulation.  相似文献   

5.
6.
In this paper, a new symplectic synchronization of chaotic systems is studied. Traditional generalized synchronizations are special cases of the symplectic synchronization. A sufficient condition is given for the asymptotical stability of the null solution of an error dynamics. The symplectic synchronization may be applied to the design of secure communication. Finally, numerical results are studied for a Quantum-CNN oscillators synchronized with a Rössler system in three different cases.  相似文献   

7.
Using finite time control techniques, continuous state feedback control laws are developed to solve the synchronization problem of two chaotic systems. We demonstrate that these two chaotic systems can be synchronized in finite time. Examples of Duffing systems, Lorenz systems are presented to verify our method.  相似文献   

8.
On synchronization of three chaotic systems   总被引:2,自引:0,他引:2  
In this paper, a simple but efficient method is applied to the synchronization of three chaotic systems, i.e., the chaotic Lorenz, Chua, and Chen systems. Numerical simulations show this method works very well.  相似文献   

9.
In this paper, we improve and extend the works of Liu and Davids [Dual synchronization of chaos, Phys. Rev. E 61 (2000) 2176–2179] which only introduce the dual synchronization of 1-D discrete chaotic systems. The dual synchronization of two different 3-D continuous chaotic systems, Lorenz systems and Rössler systems, is discussed. And a sufficient condition of dual synchronization about the two different chaotic systems is obtained. Theories and numerical simulations show the possibility of dual synchronization and the effectiveness of the method.  相似文献   

10.
In this paper, a new projective lag synchronization is proposed, where a driven chaotic system synchronizes the past state of the driver up to a scaling factor α. An active control method is employed to design a controller to achieve the global synchronization of two identical chaotic systems. Based on Lyapunov stability theorem, a sufficient condition is then given for the asymptotical stability of the null solution of an error dynamics. The effectiveness of the proposed schemes is verified via numerical simulations.  相似文献   

11.
In this paper, a practical projective synchronization problem of master–slave chaotic systems is investigated. More specifically, a fuzzy adaptive slave chaotic system subject to dead-zone nonlinearity in the input channel is proposed using only the measurable output of the master system thanks to a suitable observer. A practical projective synchronization between the master and slave systems is achieved by an adequate fuzzy adaptive control system. The underlying parameter adaptation design as well as stability analysis are carried out using a Lyapunov based approach. Unlike the previous works, in the design of the proposed synchronization scheme, we do not require to know the uncertainties function and that the dynamics of the original synchronization error are strictly positive real (SPR). In fact, herein, the uncertainties function is estimated by a fuzzy adaptive system and the dynamics of the original synchronization error are augmented by a low pass filter designed to satisfy the SPR condition. Simulation results are given to show the effectiveness of the proposed practical projective synchronization scheme.  相似文献   

12.
In this paper, we propose a unified approach for impulsive lag-synchronization of a class of chaotic systems with time delay by employing the stability theory of impulsive delayed differential equations. Three well-known delayed chaotic systems are presented to illustrate our results. Also, the estimates of the stable regions for these systems are given, respectively.  相似文献   

13.
This paper studies the fast synchronization of directionally coupled chaotic systems under a chained interaction topology. Firstly, by applying finite-time stability theory, it is shown that all chaotic systems can achieve synchronization in finite time as long as the coupling strength is strong enough. Secondly, it is proved that the settling times are determined by the interaction strength, system parameters and initial conditions of the chaotic systems. Furthermore, it is found that the settling times are mainly dependent on the bounded value and dimension of the coupled chaotic systems when the individual chaotic sub-system is bounded. Finally, illustrative examples and numerical simulations are given to show the correctness of theoretical results.  相似文献   

14.
Linear generalized synchronization of continuous-time chaotic systems   总被引:3,自引:0,他引:3  
This paper develops a general approach for constructing a response system to implement linear generalized synchronization (GS) with the drive continuous-time chaotic system. Some sufficient conditions of global asymptotic linear GS between the drive and response continuous-time chaotic systems are attained from rigorously modern control theory. Finally, we take Chua’s circuit as an example for illustration and verification.  相似文献   

15.
This paper investigates the quadratic optimal synchronization of uncertain chaotic systems with parameter mismatch, parametric perturbations and external disturbances on both master and slave systems. A robust control scheme based on Lyapunov stability theory and quadratic optimal control approach is derived to realize chaotic synchronization. The sufficient criterion for stability condition is formulated in a linear matrix inequality (LMI) form. The effect of uncertain parameters and external disturbance is suppressed to an H norm constraint. An adaptive algorithm is proposed to adjust the uncertain bound in the robust controller avoiding the chattering phenomena. The simulation results for synchronization of the Chua’s circuit system and the Lorenz system demonstrate the effectiveness of the proposed scheme.  相似文献   

16.
For researching the hybrid synchronization of heterogeneous chaotic systems on the complex dynamic network, there are two important issues to be discussed and analyzed. One is how to build a dynamic complex network which the connection between nodes is dynamic. Another is comparing and analyzing the synchronization characteristics of heterogeneous chaotic systems on the dynamic and static complex network. In this paper, the theoretical analysis and numerical simulation are implemented to study the synchronization on different dynamic and static complex networks. The results indicate it is feasible to realize the hybrid synchronization of heterogeneous chaotic systems on the complex dynamic network.  相似文献   

17.
This paper proposes a synchronization design scheme based on an alternative indirect adaptive fuzzy observer and its application to secure communication of chaotic systems. It is assumed that their states are unmeasurable and their parameters are unknown. Chaotic systems and the structure of the fuzzy observer are represented by the Takagi–Sugeno fuzzy model. Using Lyapunov stability theory, an adaptive law is derived to estimate the unknown parameters and the stability of the proposed system is guaranteed. Through this process, the asymptotic synchronization of chaotic systems is achieved. The proposed observer is applied to secure communications of chaotic systems and some numerical simulation results show the validity of theoretical derivations and the performance of the proposed observer.  相似文献   

18.
This letter investigates the function projective synchronization between fractional-order chaotic systems. Based on the stability theory of fractional-order systems and tracking control, a controller for the synchronization of two fractional-order chaotic systems is designed. This technique is applied to achieve synchronization between the fractional-order Lorenz systems with different orders, and achieve synchronization between the fractional-order Lorenz system and fractional-order Chen system. The numerical simulations demonstrate the validity and feasibility of the proposed method.  相似文献   

19.
We report on generalized projective synchronization between two identical time delay chaotic systems with single time delays. It overcomes some limitations of the previous work where generalized projective synchronization has been investigated only in finite-dimensional chaotic systems, so we can achieve generalized projective synchronization in infinite-dimensional chaotic systems. This method allows us to arbitrarily direct the scaling factor onto a desired value. Numerical simulations show that this method works very well.  相似文献   

20.
This paper addresses the problem of global finite-time synchronization of two different dimensional chaotic systems. Firstly, the definition of global finite-time synchronization of different dimensional chaotic systems are introduced. Based on the finite-time stability methods, the controller is designed such that the chaotic systems are globally synchronized in a finite time. Then, some uncertain parameters are adopted in the chaotic systems, new control law and dynamical parameter estimation are proposed to guarantee that the global finite-time synchronization can be obtained. By considering a dynamical parameter designed in the controller, the adaptive updated controller is also designed to achieve the desired results. At last, the results of two different dimensional chaotic systems are also extended to two different dimensional networked chaotic systems. Finally, three numerical examples are given to verify the validity of the proposed methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号