首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
王英  刘长伟 《分析化学》1997,25(2):153-156
利用电化学石英晶体微天平(EQCM)手段,结合循环伏安法,计量电流法对六氰亚铁铜(CuHCF)膜修饰电极及其在不同水溶液中的离子交换机制进行了研究。结果表明:通过循环伏安法,在Pt电极上可以牢固地形成CuHCF膜。在氧化还原过程中,不仅是阳离子,阴离子也参与了在CuHCF膜中的传输  相似文献   

2.
电化学石英晶体微天平研究普鲁士蓝修饰电极   总被引:2,自引:0,他引:2  
石英晶体徽天平(Quartz Crystal Microbalance,简称QCM)是一种非常灵敏的质量传感器,其检测能力可达ng级。QCM在化学中的早期应用是检测大气中的徽量成分,目前仍较活跃。由于石英压电晶体浸入溶液后在晶体/溶液界面存在较大的能量损失而不能够稳定振荡,致使QCM的应用较长时间局限于气相。八十年代初石英压电晶体在液相中的振荡终获成功,开辟了QCM应用的一个全新领域。液相中振荡成功后,QCM很快应用于电化学研究。目前已发展成为一种全新的电化学传感器——电化学石英晶体微天平(EQCM),并已用于金属电沉积、电化学腐蚀、电分析等方面的研究。  相似文献   

3.
电化学石英晶体微天平应用研究和背景扣除   总被引:1,自引:0,他引:1  
基于用循环伏安法研究非理想可逆体系时,电极本身的氧化峰电量与还原峰电量存在一比值。据此建立了一种用于电化学石英晶体微天平应用研究的背景扣除新方法。用这种方法研究了腺嘌呤、腺苷、腺苷一磷酸在金电极上的电化学氧化行为。结果表明:3种活性分子均能在1.2V左右氧化,对应的氧化电流大小顺序为:腺嘌呤>腺苷>腺苷一磷酸,氧化过程的电子转移数为6。  相似文献   

4.
利用电化学石英晶体微天平(EQCM)研究了鸟嘌呤、鸟苷和鸟苷酸在金电极上的电化学行为.结果表明,三种生物活性分子均能在1.1V电位被氧化,对应于它们所含的共同基团嘌呤环中CN键的氧化,根据氧化反应电量和质量的变化,求得电子转移数为4.氧化电流的大小次序为鸟苷酸>鸟苷>鸟嘌呤,这可能与三者在电极上的吸附量不同有关.  相似文献   

5.
石英晶体微天平(QCM)及其在电化学研究中的应用   总被引:4,自引:0,他引:4  
本文文献综述近年来发展起来的石英晶体微天平(QCM)技术的理论、实验方法和它在电化学研究中应用的概况。  相似文献   

6.
电化学石英晶体微天平及其应用   总被引:5,自引:2,他引:5  
朱果逸  王英 《分析化学》1995,23(9):1095-1101
本文介绍了EQCM的原理及其应用,探讨了EQCM在生物大分子,纳米技术方面的应用,详细介绍了EQCM在气味检测,金属电沉积、药物分析等方面研究的优点和EQCM的发展前景。  相似文献   

7.
以电化学石英晶体微天平(EQCM)为主要测试手段,在不同浓度的高氯酸钠(NaClO4)水溶液中研究了水合离子吸附到活性炭电极孔隙过程中电极的质量变化.对于每种电解液,根据Raman光谱和EQCM数据分别计算了本体溶液中和电极/溶液界面上Na+的水合数.通过比对这两组Na+水合数,探讨了Na+存储到活性炭负极过程中的去溶剂化效应.  相似文献   

8.
电化学石英晶体微天平的近期应用进展   总被引:3,自引:1,他引:3  
本文对近几年来电化学石英晶体微天平(EQCM)在吸附,膜的形成,腐蚀和电沉积等方面的应用进行了概述,并对其应用现状和前景进行了分析。  相似文献   

9.
采用双通道电化学石英晶体微天平(EQCM)研究了水溶液中普鲁士蓝(PB)薄膜修饰的两金电极上的两电极循环伏安(CV)电化学行为,归属了普鲁士白、PB、普鲁士黄三者间的转变过程,以及金基底和PB膜内所夹带的Fe(CN)6^3-/Fe(CN)6^4-杂质的氧化还原峰,为UV-Vis光谱电化学实验所支持.夹在两喷金的铟锡氧化物(ITO)电极间的PB粉末的两电极固态CV图和两PB修饰金电极在水溶液中的两电极CV图相似,说明发生了类似的电极反应.双通道EQCM有望成为研究其他物质或材料的两电极系统电化学行为的高效技术.  相似文献   

10.
利用电化学石英晶体微天平(EQCM)研究了含有防冻添加剂(甲醇、 乙醇)的高氯酸钠水溶液中的Na+离子在活性炭表面的吸附过程. 根据EQCM数据估算了电极/溶液界面上与Na+络合的甲醇、 乙醇分子的数量, 研究了Na+的溶剂化效应随本体溶液中防冻添加剂浓度的变化趋势, 以及对活性炭电极比容量的影响.  相似文献   

11.
The in situ electrochemical quartz crystal microbalance(EQCM) technique was used to investigate the ion transport of immobilized heteropolyanions at a self-assembled monolayer(SAM) modified gold electrode during electrochemical redox process.A mixed transfer method was presented to analyse the abnormal change of resonant frequency based on the simultaneous insertion/extraction of different ions.The results indicate that the migration of HSO4-anions was indispensable in the redox process of the heteropolyani...  相似文献   

12.
许博  朱果逸  张文艳 《分析化学》2000,28(9):1129-1132
应用循环伏安研究水相中2-巯基苯并咪唑的电化学氧化过程,考察了pH值、浓度等的影响,并应用电化学石英晶体天平(EQCM)监测了此氧化成膜的过程。结果表明此反应为一电子过程。结合表面光电子能谱(XPS)对此氧化膜进行了初步表征。  相似文献   

13.
Electrochemical quartz crystal microbalance (EQCM) measurements were employed for studying of the redox processes of FeS microparticles immobilized on Au electrode surface in contact with aqueous solutions of NaCl, NaCl‐NaHCO3, and NaCl‐Na2S. The objective was to shed light on the complexity of the iron sulfide electrochemistry. For the sake of comparison electrochemical behavior of FeS suspension was also investigated on the paraffin‐impregnated graphite (PIGE) and hanging mercury drop (HMDE) electrodes. In order to understand the complex nature of the redox transformations of FeS, Mohr‐salt was dissolved in NaCl and NaCl‐NaHCO3 solutions, respectively, and the deposition‐dissolution processes occurring in the course of the reduction of Fe(II) and reoxidation of Fe(0) were also monitored.  相似文献   

14.
铁氰化镧修饰电极的制备及表征   总被引:1,自引:0,他引:1  
吴萍  蔡称心 《中国化学》2005,23(2):127-131
An electroactive polynuclear inorganic compound of rare earth metal hexacyanoferrate, lanthanum hexacyanoferrate (LaHCF), was prepared by electrochemical deposition on the surface of a glassy carbon electrode with a potential cycling procedure. The cyclic voltammogram of LaHCF exhibits a pair of well-defined redox peaks with the formal potential of 208 mV (vs. SCE) at a scan rate of 100 mV/s in 0.2 mol/L NaCl solution and the redox peak currents increase linearly with the square root of the scan rate up to 1000 mV/s. The effects of the concentration of supporting electrolyte on the electrochemical characteristics of LaHCF were studied by voltammetry. LaHCF was also characterizated by scanning electron microscope (SEM), FTIR and XPS techniques.  相似文献   

15.
《Analytical letters》2012,45(7):1293-1307
ABSTRACT

Cyclic voltammetry (CV) and electrochemical quartz crystal microbalance (EQCM) were used to study the behavior of thiosalicylic acid (KTS) and dithiodibenzois acid (DTDB) at the controlled-growth mercury drop electrode (CGMDE), at the gold electrode, and at the carbon electrode. The CV method was used to study peak current intensities and peak potentials in relation to pH of the solution, to scan rate and to the concentration of the analyte. Optimum measurement parameters were established and stock solutions developed. The electrode activity was found to be primarily due to the oxidation of the sulhydryl group. The currents observed are diffusion controlled. Electrochemical studies on complexes of KTS with Cu(II) were undertaken at varying constituent proportions and the cathodic peak was found to rise by ca. 70% whereby the sensitivity of the determination was considerably increased. The EQCM method allowed to establish that, as KTS is oxidized, the electrode slightly gains in weight (ca. 80 ng). As DTDB is reduced, the electrode slightly looses in weight (ca 40 ng). Studies on the equimolecular KTS-Cu(II) complex showed the electrode to gain about 125 ng more in weight than in the solutions containing KTS alone, a fact evidencing for the formation of the complex and for its deposition on the electrode surface. A procedure was developed to determine KTS and DTDB in the substance by the CV method. Statistical evaluation of data showed the results to be characterized by good accuracy and precision (RSD 0.80% and 0.61%, respectively).  相似文献   

16.
张胜涛  韩晓燕  薛茗月 《电化学》2007,13(3):334-338
应用循环伏安法在活化玻碳电极(GCE)表面制备六氰合铁酸锰铬(MnCrHCF)膜修饰电极(MnCrH-CF/GCE)并研究其电化学性质.探讨影响膜电沉积的因素,研究pH值以及不同支持电解质等制备条件对该修饰电极性能的影响,优化制备工艺,分析其反应机理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号