首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sonochemical degradation of phenol was found to be enhanced in the presence of the volatile hydrogen atom scavengers CCl4 and perfluorohexane. The non-volatile hydrogen atom scavenger iodate did not enhance phenol degradation. The first order rate constant for aqueous phenol degradation in separate experiments using different sonochemical probes increased in the presence of 150 microM CCl4 from 0.014 to 0.031 min(-1) (probe 1) and from 0.022 to 0.061 min(-1) (probe 2). In the presence of <1.5 microM C6H14, the first order rate constant increased from 0.014 to 0.032 min(-1) (probe 1). Hydroquinone was the major observed reaction intermediate both in the presence and absence of hydrogen atom scavengers. Hydroquinone yields were substantially higher in the presence of hydrogen atom scavengers, suggesting that hydroxyl radical pathways for phenol degradation were enhanced by the hydrogen atom scavengers. These additives may be useful in improving pollutant degradation efficiency or improving synthetic processes that rely on hydroxyl radical as a key intermediate.  相似文献   

2.
羟自由基与水杨酸反应机理的初探   总被引:2,自引:0,他引:2  
探讨羟自由基与水杨酸的反应动力学过程。水杨酸与Fenton反应产生的的羟自由基反应,采用紫外-可见分光光度法(UV)和质谱法(MS),考察反应物的浓度、反应时间、反应温度、溶剂pH值等对反应产物的浓度以及反应速率的影响。水杨酸与.OH反应生成的紫色产物在波长530nm处有最大UV吸收峰,但仅于pH=4.51的缓冲溶液和水中有吸收峰;且该产物的吸光度值,随着反应物浓度的增加而增加;随反应时间的延长而减少;随着反应温度的升高而减少。反应速率t=5s达到最大值,其后随着反应时间的延长而逐渐降低,1min时达到平衡。通过MS分析,可得到质荷比(m/Z)=153,248,249,288,289,304,328,329,344,345的离子峰。推测羟自由基与水杨酸反应的中间产物是紫色的大分子自由基,而最终产物为二羟基苯甲酸,该反应可能是加成反应和聚合反应同时进行。  相似文献   

3.
The plasma-treated pyrite (PTP) nanostructures were prepared from natural pyrite (NP) utilizing argon plasma due to its sputtering and cleaning effects resulting in more active surface area. The NP and PTP were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Brunauer–Emmett–Teller (BET) and scanning electron microscopy (SEM) methods. The performance of the PTP was greater than NP for treatment of Reactive Red 84 (RR84) by the heterogeneous sono-Fenton process. The optimum amounts of main operational parameters were obtained as PTP of 4 g/L, initial dye concentration of 10 mg/L, pH of 5, and ultrasonic power of 300 W after 120 min of reaction time. Also, the effects of enhancers, and inorganic salts and t-butanol as hydroxyl radical scavengers on the degradation efficiency were investigated. Gas chromatography–mass spectroscopy analysis (GC–MS) was applied for detection of some degradation intermediates. Environmentally friendly plasma modification of the NP, in situ production of H2O2 and OH radicals, low leached iron concentration and repeated reusability at the milder pH are the significant benefits of the PTP utilization.  相似文献   

4.
The removal of lead (100 mg/L) and cadmium (27 mg/L) complexed with ethylenediamine tetraacetic acid (EDTA) in presence of different scavengers has been investigated. The experiments show that in acidic solutions, the EDTA complexed lead may be reduced at a dose of 40 kGy up to 97% without the addition of typical OH radical scavengers such as Na(K) formate. The addition of OH radical scavengers as 1×10−3 mol/L HCOOK, 2×10−3 mol/L carbonate or 2×10−3 mol/L bicarbonate (wide range of pH) results in no further improvement. The bubbling of the solution with nitrogen or oxygen also exhibits no positive effect. On the contrary, saturation with nitrous oxide in the presence of scavengers has a modest positive influence, whereas in the system which is scavenger-free, high negative effect (30 %) was observed. The presence of nitrate (e aq scavenger) appears to be important for an effective reduction of complexed lead. The efficient removal of cadmium complexed with EDTA proceeds up to 96 % at a dose of 40 kGy with an addition of 5×10−3 mol/L of carbonate as the OH radical scavenger and simultaneously pH buffer (pH 10.5). After irradiation, the cadmium is present in the final form of CdCO3.  相似文献   

5.
Absolute rate constants for hydroxyl radical, azide radical, and hydrated electron reactions with a sulfa drug 4,4'‐diamino diphenyl sulfone (dapsone) in water have been evaluated using electron pulse radiolysis technique. Absolute rate constants for hydroxyl radical and azide radical were determined as (8.4 ± 0.3) × 109 and (5.6 ± 0.5) × 109 M?1 s?1, respectively. The reduction of dapsone with the hydrated electron occurred with rate constant of (9.2 ± 0.1) × 109 M?1 s?1. Hydroxyl radical reactions result in the synchronous formation of adduct as well as anilino radical. The interesting observation is that the yield of the anilino radical increases with increase in pH. Contrary to this, the yield of the adduct decreases with pH. We propose that hydroxyl radical adds predominantly to the aniline. In contrast, the reaction of azide radical with the dapsone suggests that the reaction occurs at the –NH2 moiety of the aniline ring. The free radical electron transfer from dapsone to parent radical cation of non‐polar solvent also results in the formation of anilino radical only suggesting that the radical cation of dapsone has a short lifetime. The reaction of hydrated electrons with the dapsone suggests that the reaction occurs at different reaction site. The experimental results supported by theoretical calculations of this study provide fundamental mechanistic parameters that probably decide the fate of the radical cation of aniline derivatives. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Sonochemical-assisted synthesis of nano-structured lead dioxide   总被引:1,自引:0,他引:1  
PbO(2) nano-powder was synthesized by the ultrasonic irradiation of an aqueous suspension of dispersed beta-PbO, as precursor, in the presence of ammonium peroxydisulfate as an oxidant. The reaction rate increased with an increase in temperature and ammonium peroxydisulfate concentration. In the presence of ammonium peroxydisulfate, the increased concentration of hydroxyl radical facilitated the oxidation of beta-PbO to PbO(2) under ultrasonic irradiation. The PbO(2) nano-powder was characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). It was found that the applied ultrasonic wave determines the particle size. PbO(2) samples prepared under optimized experimental conditions have lead dioxide particles in the range of 50-100 nm, as shown by SEM. The XRD results reveal that only beta-PbO(2) is formed under optimum conditions. When the reaction mixture was stirred instead of ultrasonically irradiated, only a fraction of the lead oxide was converted to lead dioxide, and lead sulfate was the main reaction product.  相似文献   

7.
研究了利用强电离放电产生等离子体方法制取羟基自由基氧化降解高浓度苯酚废水。当羟基自由基浓度达到1 037 mg·L-1时,初始浓度为1 215 mg·L-1的废水降解率达99.11%;初始浓度为8 853 mg·L-1的废水苯酚浓度下降到6 250 mg·L-1,1 mg羟基自由基可处理苯酚2.5 mg。在同样羟自由基浓度下,苯酚初始浓度越小,去除率越高;但初始浓度越高,处理的绝对量越大。阐述并解释了不同降解阶段废水pH值、电导率与羟基自由基浓度变化的关系。随着羟自由基浓度的增大,废水酸碱性由接近中性逐渐转为酸性,浓度越大,酸性越强;继续增大羟自由基浓度,变化渐趋平缓。随着羟自由基的通入,电导率有一个微小的降低阶段然后开始上升,说明苯酚不断的被氧化为有机酸。通过紫外图谱和色谱分析了降解中间产物,表明氧化初始阶段邻苯二酚、对苯二酚和苯醌是其中重要的化合物。  相似文献   

8.
Ultrasonically initiated emulsion polymerization of styrene was carried out in the presence of aliphatic alcohols, e.g. methanol, ethanol, n-pronanol and n-butanol, as volatile hydroxyl radical scavengers. With the addition of methanol, the polymerization rate of styrene increased, while the molecular weight and the average particle size of the produced polystyrene decreased because more radicals were produced in the presence of methanol. This is true also for the other polymerization system using other aliphatic alcohols, such as ethanol, n-pronanol and n-butanol, suggesting that the alcohols enter into cavitation bubbles and further react with hydroxyl radicals (*OH) from the sonolysis of water to produce hydroxyalkyl radicals, so as to reduce the recombination of *H and *OH radicals, therefore more radicals will be present in the systems for initiating polymerization. Obviously, it is an effective way to enhance ultrasonically initiated emulsion polymerization rate of styrene by adding volatile hydroxyl radical scavenger.  相似文献   

9.
荧光光谱法研究羟基自由基诱导的酪氨酸氧化   总被引:1,自引:0,他引:1  
二酪氨酸是酪氨酸氧化的标志性产物.为研究影响羟基自由基诱导酪氨酸氧化的因素,采用同步荧光光谱结合二维相关技术研究羟基自由基诱导酪氨酸氧化的反应过程.结果表明:pH变化时,二酪氨酸的荧光峰位、峰强发生变化.在羟基自由基诱导酪氨酸氧化体系中,随着酪氨酸浓度的增加,二酪氨酸产量升高;随着过氧化氧浓度的增加,二酪氨酸产量降低;...  相似文献   

10.
The study consists of a detailed investigation of the degradability of the emerging water contaminant-caffeine by homogeneous and heterogeneous Advanced Oxidation Processes (AOP’s), estimation of a synergy index for each hybrid operation thereof, and proposing the most plausible reaction mechanisms that are consistent with the experimental data. It also encompasses evaluation of the effect of the water matrix represented by carbonate species and humic acids, as strong scavengers of hydroxyl radicals. The results showed that single AOP’s such as sonolysis (577 kHz) and photolysis with H2O2 provided complete caffeine elimination, but they were insufficient for the mineralization of the compound. Hybrid AOP’s were considerably more effective, particularly when operated at a heterogeneous mode using commercial TiO2. The most effective hybrid process was UV-H2O2/TiO2, which provided more than 75% TOC decay at the minimum test doses of the reagent and catalyst. While the addition of ultrasound to the process significantly increased the rate of caffeine decomposition, it reduced the overall degradation of the compound to 64% in terms of TOC decay. The antagonistic effect was attributed to the formation of excess H2O2, and the presence of cavity clouds and/or high density layers that inhibited the transmission of UV light. The effect of natural water ingredients was found to reduce the reaction rates, signifying the major contribution of hydroxyl radicals to the destruction of caffeine. The proposed reaction mechanisms based on OH radical attack and the calculated energy barriers were in good agreement with the experimentally detected reaction byproducts.  相似文献   

11.
The intensive consumption of pharmaceuticals and drugs in the last decades has led to their increased concentrations in wastewaters from industrial sources. The present paper deals, for the first time, with the sonochemical degradation and mineralization of furosemide (FSM) in water. FSM is a potent loop diuretic used to treat fluid build-up due to heart failure, liver scarring, or kidney disease. The influence of several operating parameters such as acoustic intensity, ultrasonic frequency, initial FSM concentration, solution’s pH, nature of the dissolved gas (Ar, air and N2) and radical scavengers (2-propanol and tert-butanol) on the oxidation of FSM was assessed. The obtained results showed that the degradation rate of the drug increased significantly with the increase of the acoustic intensity in the range of 0.83 to 4.3 W cm−2 and decreased with the augmentation of the frequency in the range of 585–1140 kHz. It was also found that the initial rate of the sonolytic degradation of FSM increased with the increase of its initial concentration (2, 5, 10, 15 and 20 mg/L). The most significant degradation was achieved in acidic conditions at pH 2, while in terms of saturating gas, the rate of FSM degradation decreased in the order of Ar > air > N2. The FSM degradation experiments with radical scavengers showed that the diuretic molecule degraded mainly at the interfacial region of the bubble by hydroxyl radical attack. Additionally, in terms of acoustic conditions, the sono-degradation of 30.24 µmol L-1 of FSM solution demonstrate an optimal performance at 585 kHz and 4.3 W/cm2, the results indicated that even if the ultrasonic action eliminated the total concentration of FSM within 60 min, a low degree of mineralization was obtained due to the by-products formed during the sono-oxidation process. The ultrasonic process transforms FSM into biodegradable and environmentally friendly organic by-products that could be treated in a subsequent biological treatment. Besides, the efficiency of the sonolytic degradation of FSM in real environmental matrices such as natural mineral water and seawater was demonstrated. Consequently, the sonochemical advanced oxidation process represent a very interesting technique for the treatment of water contaminated with FSM.  相似文献   

12.
光助Fenton反应催化氧化降解罗丹明B表观动力学研究   总被引:2,自引:0,他引:2  
Fenton反应作为处理难降解有机污染物有效的高级氧化技术之一,其氧化能力来自于在酸性条件下催化分解H2O2产生强氧化性(2.8 eV)的羟基自由基。而太阳光照下可促进羟基自由基的产生,从而提高Fenton反应氧化降解能力。文章在初始pH 3.5,太阳光直射的情况下研究了罗丹明B,Fe2+和H2O2等因素的初始浓度对光助Fenton反应降解罗丹明B速率的影响,采用求解拟合幂函数动力学方程获得了该反应体系的表观动力学方程。主要研究内容包括:罗丹明B溶液的紫外-可见光谱图;罗丹B溶液的浓度-吸光度工作曲线;不同初始罗丹明B浓度体系反应的分析;不同初始Fe2+浓度体系反应的分析;不同初始H2O2浓度体系反应的分析;表观动力学方程参数的计算。实验结果表明,该反应体系的动力学方程为:V=5×10-9P1.28F0.366E0.920,反应总级数为2.57。  相似文献   

13.
Hydroxyl free radicals produced in Fricke solution exposed to 80 kV X-rays or 23 kHz ultrasound (intensity 3 W cm−2) or 20 kHz ultrasound (intensity 18.9 W cm−2) or 3.5 MHz clinical ultrasound (intensity 1.47 W cm−2), as estimated from the Fricke dosimetric data, exhibited a linear dose-response relationship. The dosimeter was found to be effective in the concentration range 1.0–8.0 mM of FeSO4 solution. The hydroxyl radicals produced in Fricke solution were inhibited by the OH radical scavengers dimethyl sulfoxide (200 mM), -histidine (10 mM) and sodium benzoate (10 mM) in a manner proportional to the rate constants of their reaction with the OH radicals. The power threshold for OH radical formation, which is presumably the threshold for cavity formation, was estimated for 23 kHz ultrasound by this dosimeter as 1.28 W cm−2 for a 4 cm3 sample volume.  相似文献   

14.
A sonophotochemical oxidation process has been used for the treatment of an aqueous solution of phenol. The aim of this work is to evaluate the effect of nitrate ions on hydroxyl radical production and on phenol oxidation. It has been demonstrated that ultrasound can produce NOx (nitrate and nitrite), with a production rate of 2.2 μM min−1. The photolysis of nitrate can significantly improve the hydroxyl radical production. The apparent rate constant for hydroxyl radical production increased from 0.0015 min−1 to 0.0073 min−1 while increasing initial nitrate concentration from 0 to 0.5 mM. The concentration of hydroxyl radical was directly proportional to the initial nitrate concentration. Using US/UV process, the apparent reaction rate constant of phenol degradation in the presence of nitrate reached 0.020 min−1, which was relatively lower than the value obtained (0.027 min−1) in the absence of nitrate. It appeared that, nitrate ions can inhibit the sonochemical degradation of organic compounds such as phenol.  相似文献   

15.
The synthesis of dinitrochalcones was studied by using ultrasonic irradiation in the presence of potassium carbonate as a catalyst, which provided a conventional procedure with the advantages of a short reaction period and as high as 90% product yield.  相似文献   

16.
Catalytic ultrasonic degradation of aqueous methyl orange was studied in this paper. Heterogeneous catalyst MnO2/CeO2 was prepared by impregnation of manganese oxide on cerium oxide. Morphology and specific surface area of MnO2/CeO2 catalyst were characterized and its composition was determined. Results showed big differences between fresh and used catalyst. The removal efficiency of methyl orange by MnO2/CeO2 catalytic ultrasonic process was investigated. Results showed that ultrasonic process could remove 3.5% of methyl orange while catalytic ultrasonic process could remove 85% of methyl orange in 10 min. The effects of free radical scavengers were studied to determine the role of hydroxyl free radical in catalytic ultrasonic process. Results showed that methyl orange degradation efficiency declined after adding free radical scavengers, illustrating that hydroxyl free radical played an important role in degrading methyl orange. Theoretic analysis showed that the resonance size of cavitation bubbles was comparable with the size of catalyst particles. Thus, catalyst particles might act as cavitation nucleus and enhance ultrasonic cavitation effects. Measurement of H2O2 concentration in catalytic ultrasonic process confirmed this hypothesis. Effects of pre-adsorption on catalytic ultrasonic process were examined. Pre-adsorption significantly improved methyl orange removal. The potential explanation was that methyl orange molecules adsorbed on catalysts could enter cavitation bubbles and undergo stronger cavitation.  相似文献   

17.
The aim of the present study was to apply ultrasonic technique to remove Malachite Oxalate Green (MG) from aqueous solution. An ultrasonic bath with frequency of 35 kHz was used to investigate the effect of different operational parameters such as MG concentration, power density, temperature, mechanical agitation and addition of EtOH, 2-PrOH and iso-BuOH. Decolorization of MG follows a first order kinetics and hydroxyl radicals have an important role in degradation of MG. The apparent reaction rate constant (k(ap)) was influenced by variation of operational parameters. The activation energy was 30.95 kJ/mol in temperature range of 21-34 degrees C, suggesting a diffusion-controlled reaction. Alcohols act as hydroxyl radicals scavengers having undesirable contribution. UV-vis spectral change of MG showed hypsochromic shift occurred with increasing sonication time, proposing N-demethylation process of MG.  相似文献   

18.
The sonodynamic damage of bovine serum albumin (BSA) under ultrasonic irradiation in the presence of amsacrine (AMSA) was studied by hyperchromic effect of UV-vis spectra and quenching effect of intrinsic fluorescence. In addition, several influencing factors such as ultrasonic irradiation time, AMSA concentration, system acidity and ionic strength about the damage of BSA molecules were reviewed. The results showed that the damage degree was obviously enhanced with the increase of ultrasonic irradiation time and AMSA concentration, but it was only slightly increased with the increase of solution pH value and ionic strength. Furthermore, the binding and damaging sites to BSA molecules were estimated by synchronous fluorescence spectra. The different chances to damage tryptophan (Trp) and tyrosine (Tyr) residues were found through the ratios of synchronous fluorescence quenching (RSFQ). At last, the generation of reactive oxygen species (ROS) in sonodynamic process was estimated by the method of oxidation-extraction Spectrometry (OES). And then, several radical scavengers were used to determine the kind of ROS, which includes singlet oxygen (1O2) and hydroxyl radicals (·OH). Perhaps, the result would bring a certain guiding significance to use sonosensitive drugs in the fields of tumor treatment.  相似文献   

19.
A rhodamine nitroxide probe was designed to detect the hydroxyl radical (·OH), which presented high selectivity for ·OH over other reactive oxygen species (ROS) and linear fluorescence response to ·OH produced by Fenton reaction. The product was detected by HPLC-MS, indicating that the main product of the reaction was O-methylhydroxylamine and the product peak areas measured by HPLC-UV/vis and HPLC-FLD both enhanced proportionally with the increase of ·OH concentration. The application of the probe in biological system was explored to trace the production of ·OH in cells under oxidative stress condition induced by rotenone which can inhibit the mitochondria respiratory chain complex I and we found that appropriate rotenone may induce the normal human liver cells (L02) and human hepatoma cells (HepG2) to produce ·OH at different degrees.  相似文献   

20.
The sonolysis of surfactants (such as sodium dodecylbenzenesulfonate (DBS), sodium dodecylsulfate (SDS), and polyethylene glycol monostearate), sodium 4-toluenesulfonate (STS), and 1-hexanol in aqueous solutions was investigated under an argon atmosphere with ultrasound of 200 kHz in order to compare the scavenging efficiency of the hydroxyl radical and the accumulation in the gas-liquid interfacial region of the cavitation bubbles. The degradation rate of the solute follows the order 1-hexanol > DBS and SDS > STS. The scavenging efficiency of the hydroxyl radical by non-volatile surfactants was much greater than that of the non-volatile and hydrophilic solute (e.g., STS). The surfactant was accumulated in a relatively high ratio in the interfacial region. The degradation of surfactants occurred by reaction with the hydroxyl radical and also by pyrolysis at high temperature. On the other hand, STS, due to its non-volatile and hydrophilic properties, was principally present in the bulk solution and the degradation by pyrolysis was not observed at the investigated concentration ranges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号