首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The volume phase transition behavior of a poly(N-isopropylacrylamide) gel (NIPA gel) in solutions of N-acyl amino acid surfactants were studied as a function of surfactant concentration. The addition of a surfactant beyond the critical micelle concentration (cmc) produced elevation in the transition temperature of the NIPA gel and its swelling. The changes in the volume phase transition temperature and in the swelling of the NIPA gel became more significant with the decreasing size of the amino acid side chain. This result could almost be explained only by the binding amount of surfactant onto the NIPA gel regardless of molecular structure of the amino acid. The binding amount increased in the order of sodium N-lauroyl-glycinate>-alaninate>-valinate>-leucinate>or=-phenylalaninate. For an N-acyl amino acid surfactant to bind onto the NIPA gel, to increase the transition temperature, and to facilitate swelling of the gel, the steric hindrance of the amino acid side chain was more effective than its hydrophobicity.  相似文献   

2.
The structure of a microemulsion mixed with polymer networks was investigated by means of small-angle neutron scattering (SANS). The system consists of nonionic surfactant, polymer network, oil, and water. The microemulsion and the polymer network employed in this work are known to undergo temperature-induced structural transition and volume phase transition, respectively. Polymer solutions and gels were made by polymerizing monomer solutions in the presence of microemulsion droplets. In the case of a mixture of an N-isopropylacrylamide (NIPA) monomer solution and a microemulsion, the NIPA monomer was found to behave as a cosurfactant. However, polymerization resulted in a phase separation to polymer-rich and -poor phases. Interestingly, SANS results indicated that a well-developed ordered structure of oil domains was formed in polymer network and the structure was very different from its parent systems. Furthermore, the system underwent two different types of structural transitions with respect to temperature. One was originated from the structural transition of microemulsion due to the change of the spontaneous curvature and the other from the volume phase transition of the NIPA gel.  相似文献   

3.
We carried out the measurements of the equilibrium size of N-isopropylacrylamide (NIPA) gel immersed in a dilute aqueous solution of hydroquinone (HQ) as a function of temperature. It was found that, by embedding a small amount of HQ molecules into the gel fluid, volume phase transition behavior of the NIPA gel changed qualitatively depending on the HQ concentration. Moreover, the change in phase transition from continuous to discontinuous was observed without permanent alteration of polymer networks such as hydrolysis. This fact suggests that, by changing HQ concentration, we will be able to find a critical isobar without changing the gel structure.  相似文献   

4.
The phase transition and critical phenomenon of equilibrium swollen poly(N-isopropylacrylamide) (NIPA) hydrogels were studied by 1H NMR spectroscopy in liquid solution mode. The quantitative NMR observation shows that the peak height and line width of polymer proton and of the HOD proton, and relaxation times of HOD proton all transitionally change as the temperature approaches the transition temperature. The relaxation times of water protons are also measured quantitatively, which shows that the temperature dependence of relaxation times of HOD on temperature before the transition is not consistent with relaxation theory based on the assumption of dominated dipolar interaction between like-spin nuclei and isotropic rotational motion. To explain the surprising relaxation behavior of HOD, we suggest that the amount of bound water in gels increases gradually with temperature at the approach of the phase transition. The pulsed-gradient spin-echo NMR experiments of NIPA gel confirm this suggestion. We believe that these results have important implications concerning the mechanism of the phase transition of NIPA hydrogels.  相似文献   

5.
The dissolved states of redox-active non-ionic surfactant (FPEG) in the swollen state of N-isopropyl acrylamide (NIPA) hydrogel have been studied by using a gel-modified electrode. The pronounced decrease in the peak current and the negative shift in the formal potential of CV at the gel-modified electrode, as compared with the normal GC electrode, was observed in the micelle-solution; this indicates that the diffusive FPEG molecules which form the micelle hardly penetrate into the NIPA gel. This result suggests that there exists an interaction between FPEG molecules and the NIPA gel in the vicinity of the surface of the NIPA gel in the micelle-solution. However, this also indicates that a small amount of FPEG molecules which can form micelles exist in the NIPA gel.  相似文献   

6.
Solution of polystyrene in styrene were dispersed in an aqueous gel phase comprising sodium lauryl sulfate, cetyl alcohol, and water using an emulsification process known to produce monomer droplet sizes inthe submicron size range (referred to as miniemulsion droplets). The shelf-life stabilities of these miniemulsions were studied to determine their relative droplet sizes, and the emulsions were concommitantly polymerized in an isothermal batch reaction calorimeter. The polymerization kinetics and final particle sizes produced were compared with miniemulsion and conventional emulsion polymerizations prepared using equivalent recipes without the addition of polystyrene. The results indicate that polymerization of miniemulsions prepared from polymer solutions produce significantly different kinetics than both miniemulsion and conventional emulsion polymerizations. In general, a small amount of polymer greatly increases the rate of polymerization and the final number of particles produced in the polymerization to the extent where even conventional polymerizations carried out above the critical micelle concentration of the surfactant polymerize more slowly. The results are explained by considering the system to be comprised of small, stable pre-formed monomer-swollen polymer particles which are able to efficiently capture aqueous phase radicals. This enables the system to produce a large final number of particles, similar to the initial number of pre-formed polymer particles, as opposed to miniemulsions and micelles in which only a relatively small fraction of the initial number of species (droplets or micelles) become polymer particles. © 1994 John Wiley & Sons, Inc.  相似文献   

7.
The role of nonionic vesicles on the rheological behavior of Pluronic F127 is investigated above the dilute regime and below the cloud point of the nonionic surfactant. F127 is a copolymer possessing sol-gel transition by heating attributed to a phase transition from micellar to cubic. The presence of surfactant vesicles is expected to enhance the compartmentalization of a variety of drugs, independently of their affinity to the solvent. Such entrapment would be suitable for controlled release of the drugs in different applications. We address here a mixed Pluronic-nonionic surfactant system with particular emphasis to the effects of the surfactant on the rheological properties of the Pluronics, and the correlation between these properties and drug release control. The results show that the rheological properties of the mixed system are mainly governed by the behavior of the polymer alone and that the mixed system can be useful to control the percutaneous permeation of a small drug, such as Diclofenac Sodium salt.  相似文献   

8.
Stimuli-sensitive drug delivery systems (DDSs) have attracted considerable attention in medical and pharmaceutical fields; thermosensitive DDS dealing with poly(N-isopropylacrylamide) (poly(NIPA)) have been widely studied. Novel NIPA emulsion gels, i.e., NIPA hydrogels containing distributed oil (oleyl alcohol) microdroplets, were synthesized by means of an emulsion-gelation method in which the polymerization of hydrogels in an aqueous phase in an oil-in-water (O/W) emulsion and the loading of a lipophilic drug (indomethacin) dissolved in an oil phase were accomplished simultaneously. The pulsatile (on-off) drug release from the NIPA emulsion gel loading indomethacin to a phosphate buffered saline (PBS) solution was successfully controlled by a temperature swing between 25 degrees C (release off) and 40 degrees C (release on). The mechanism of the pulsatile drug release was discussed in relation to the diffusion rate, distribution ratio, solvent exchange of NIPA hydrogels, and drug release from an NIPA organogel. The mechanism was as follows: the solvent exchange occurred within the NIPA emulsion gel (the NIPA gel-network absorbed oleyl alcohol with indomethacin) at temperatures above the LCST, and the diffusion rate of indomethacin through the solvent-exchanged gel was higher at 40 degrees C than at 25 degrees C.  相似文献   

9.
The release rates of three kinds of drugs, with different charges, from poly (N-isopropylacrylamide) hydrogels were studied. The release rate was observed to be temperature dependent for the types of drug. When the temperature was lower than the phase transition temperature, the release rate was higher at lower temperatures and increased as the temperature rose. The amount of drugs released from a poly (N-isopropylacrylamide) hydrogel disk was plotted against the square root of time. It was found that the amount of drugs released was proportional to the square root of time over a certain time interval. A lag phase was observed before the amount of drug released became proportional to the square root of time. The longest time lag was observed at the phase transition temperature of poly (N-isopropylacrylamide); LCST (33°C). This suggests that the penetration rate of water into the hydrogels is lowest at the phase transition temperature and drastically changes around it. The release rates of drugs was also affected by the charges of the drug molecules. This may be caused by the interaction of drug molecules with polymer chains. When anionic drugs are released, the electrostatic repulsion seems to act between polymer chains and drug molecules. Therefore, the lag phase observed at the beginning of the release of anionic drugs was shorter, as compared with other kinds of drugs at any temperatures between 25 and 40°C. On the other hand, when cationic drugs are released, the time lag was longer at temperatures higher than 33°C as compared with the time lag at lower temperatures. At temperatures higher than 33°C, drugs are released from the surface skin layer of the hydrogel where water molecules are less mobile than those in bulk distilled water. The drug release thus shows a long lag phase.  相似文献   

10.
Controlled delivery systems would be more beneficial and ideal if the drug could be delivered with respond to external environmental change. It could be used to overcome the shortcomings of conventional dosage forms. Therefore, the correct amount of drug would be released upon the stimulation of such a temperature and concentration change. The purpose of study is to investigate the influence of temperature and drug concentration from poly(2-hydroxyethyl methacrylate and N-isopropylacrylamide)/poly(HEMA-NIPAAm). The macroporous structure 5HEMA15NIPAAm was showed the most rapid responsiveness in swelling ratio, polymer volume fraction, swelling and deswelling kinetics. The high drug loading capacity was achieved at or below ambient temperature, whilst the release profile was revealed sustain release of conventional anti-inflammatory drug; prednisolone 21 hemisuccinate sodium salt. In general, drug loading capacity and drug diffusion kinetics are influence by the porosity of hydrogels, temperature, and drug concentration.  相似文献   

11.
The time dependent changes of the lamellar gel structure in a nonionic O/W cream were studied. It appeared that the changes were connected with alterations in the hydrophilic layers of this lamellar gel structure. The structure of the hydrocarbon layers did not change. The alterations were induced by an increasing hydration of the surfactant molecules on cooling from the preparation temperature to room temperature. Ageing of the cream involves a decrease of the thickness of the hydrophilic layers and a change of the distribution of the surfactant molecules, resulting in, among other things, a decrease of the release rate of a hydrophilic drug. Ageing of the cream can be prevented by using the appropriate amount of starting materials or by the use of polymerizable surfactants. In the former case a cream, from which a drug is slowly released, is obtained. On the other hand, creams containing polymerized surfactants can release drugs at a relatively high rate.  相似文献   

12.
A copolymer gel prepared from N-isopropyl-acrylamide (NIPA) and vinylferrocene (VF) exhibits volume phase transition. The phase transition can be controlled electrochemically, and electrochemical behavior of the gel can be controlled thermally. A copolymer of NIPA and VF, which is not crosslinked, also possesses similar characteristics. Those polymer and gel can be applied to enzyme electrodes. © 1997 John Wiley & Sons, Ltd.  相似文献   

13.
Shell cross-linked (SCL) thermoresponsive hybrid micelles consisting of a cross-linked thermoresponsive hybrid hydrophilic shell and a hydrophobic core domain were synthesized from poly(N-isopropylacrylamide-co-3- (trimethoxysilyl)propyl methacrylate)-b-polymethyl methacrylate (P(NIPAAm-co-MPMA)-b-PMMA) amphiphilic block copolymers. Transmission electron microscopy (TEM) images showed that the SCL micelles formed regularly globular nanoparticles. The SCL micelles showed reversible dispersion/aggregation in response to temperature cycles through an outer polymer shell lower critical solution temperature (LCST) for PNIPAAm at around 33 degrees C, observed by turbidity measurements and dynamic light scattering (DLS). The drug loading and in vitro drug release properties of the SCL micelles bearing a silica-reinforced PNIPAAm shell were further studied, which showed that the SCL micelles exhibited a much improved entrapment efficiency (EE) as well as a slower release rate which allowed the entrapped molecules to be slowly released over a much longer period of time as compared with pure PNIPAAm-b-PMMA micelles.  相似文献   

14.
Summary: Here we show a new design concept of functional polymer gel for rapid deswelling by utilizing micelle‐forming ability of surfactant. A thermosensitive polymer bearing a surfactant was synthesized by using N‐isopropylacrylamide and a reactive surfactant. Above lower critical solution temperature, the grafted surfactant acts to form micelle structure. In the shrinking process, the inside water is rapidly squeezed out through hydrophilic channel between the formed micelles and consequently the gel shrinks quickly.

Shrinking mechanism of PNS gel in response to temperature increase.  相似文献   


15.
Addition of a weak polyelectrolyte, poly(methacrylic acid) (PMA), to a supported phospholipid bilayer made from 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) depresses the melting temperature and alters the morphology of the bilayer in the gel phase. Ellipsometry measurements show that PMA adsorption lowers the phase transition temperature by 2.4 degrees C. Atomic force microscopy (AFM) showed no visible contrast in the fluid phase (above the melting temperature) but a rich morphology in the gel phase. In the gel phase, adsorption leads to formation of significantly less mobile phospholipid islands and other defects. One consequence of this lower mobility is a decrease in the implied cooperativity number of the phase transition, N, when polymer is added. Additionally, AFM images of the gel-phase bilayer show a highly defected structure that anneals significantly more slowly than in the absence of adsorbed polymer. Tentatively, we suggest that PMA preferentially decorates island and defect edges of the DMPC bilayer.  相似文献   

16.
Unilamellar vesicles are observed to form in aqueous solutions of the cationic surfactant, cetyl trimethylammonium bromide (CTAB), when 5-methyl salicylic acid (5mS) is added at slightly larger than equimolar concentrations. When these vesicles are heated above a critical temperature, they transform into long, flexible wormlike micelles. In this process, the solutions switch from low-viscosity, Newtonian fluids to viscoelastic, shear-thinning fluids having much larger zero-shear viscosities (e.g., 1000-fold higher). The onset temperature for this transition increases with the concentration of 5mS at a fixed CTAB content. Small-angle neutron scattering (SANS) measurements show that the phase transition from vesicles to micelles is a continuous one, with the vesicles and micelles coexisting over a narrow range of temperatures. The tunable vesicle-to-micelle transition and the concomitant viscosity increase upon heating may have utility in a range of areas, including microfluidics, controlled release, and tertiary oil recovery.  相似文献   

17.
We are reporting an unusual closed-loop phase behavior of poly(ethylene glycol)-beta-poly(ethyl-2-cyanoacrylate) (PEG-PEC) aqueous solutions. As the temperature increased from 0 to 60 degrees C, the aqueous polymer solution (12 wt %) underwent sol-to-gel and gel-to-syneresis transitions. However, the polymer aqueous solution persisted as a sol phase below 4.0 wt % as well as above 16 wt % in the same temperature range, thus forming a closed-loop gel domain in the phase diagram. The closed-loop gel domain is suggested to be a result of the balance between the aggregation and the stabilization of micelles in specific temperature and concentration ranges.  相似文献   

18.
The feasibility of temperature-swing adsorption of heavy metals on a thermosensitive N-isopropylacrylamide (NIPA) hydrogel was examined. We have proposed a novel temperature-swing solid-phase extraction (TS-SPE) technique. First, a metal ion in an aqueous solution is complexed with an extractant. Subsequently, the metal-extractant complexes (or micelles) are adsorbed onto the NIPA hydrogel through a hydrophobic interaction above the lower critical solution temperature (LCST). Finally, the metal-extractant complexes are desorbed from the NIPA hydrogel after it is cooled below the LCST. In a model system consisting of Cu(II) ions, sodium n-dodecylbenzenesulfonate (SDBS), and NIPA hydrogel, the proposed TS-SPE technique has been successfully conducted. The following observations can be made: the amount of adsorbed Cu(II) ions increases with the increase in temperature, the maximum adsorption is attained at a temperature above the LCST, and the hydrogel adsorbs and desorbs Cu(II) ions reversibly due to the temperature-swing between 10 and 40 degrees C. The LCSTs of poly(NIPA) in aqueous SDBS solutions with/without CuCl2 and the surface tensions of their solutions suggest that the hydrophobicity of the complex Cu(DBS)2 is greater than the hydrophobicities of SDBS and DBS. In addition to the separation of heavy metals, TS-SPE is potentially applicable to cases such as the separation of biological molecules by means of metal-ion affinity.  相似文献   

19.
Brush-like block copolymers with poly(t-butyl methacrylate) (PBMA) and poly(N-isopropylacrylamide) (PNIPAAm) as side arms, PBMA-b-PNIPAAm, were designed and synthesized via a simple free radical polymerization route. The chemical structure and molecular weight of these polymer brushes were characterized and determined by nuclear magnetic resonance (1H NMR), Fourier transform infrared spectrometry (FTIR) and gel permeation chromatography (GPC). The micellar formation by these polymer brushes in aqueous solutions were detected by a surface tension technique, and the critical micelle concentration (CMC) ranged from 1.53 to 8.06 mg L−1. The morphology and geometry of polymer micelles were investigated by transmission electron microscope (TEM) and dynamic light scattering (DLS). The polymer micelles assume the regularly-spherical core-shell structure with well-dispersed individual nanoparticles, and the particle size was in the range from 36 to 93 nm. The PNIPAAm segments exhibited a thermoreversible phase transition, so the resulting block polymer brushes were temperature-sensitive and the low critical solution temperature (LCST) was determined by UV-vis spectrometer at about 28.82–29.40°C. The characteristic parameters of the polymer micelles such as CMC, micellar size and LCST values were affected by their compositional ratios and the length of hydrophilic or hydrophobic chains. The evaluation for caffeine drug release behavior of the block polymer micelles demonstrated that the self-assembled micelles exhibited thermal-triggered properties in controlled drug release.  相似文献   

20.
The phase behavior of aqueous solutions of mixed cetyltrimethylammonium bromide (CTAB) and sodium octyl sulfate (SOS) was examined at different temperatures (20, 30, 40, and 50 degrees C). While stable vesicles were formed in a narrow composition range on the SOS-rich side at 20 degrees C, the range widened remarkably when the temperature was raised to 30 degrees C. Thus, the vesicle region extended to cover almost the entire composition range, CTAB:SOS = 0.5:9.5-5.0:5.0, at the total surfactant concentrations of 50-70 mM on the SOS-rich side. To analyze the temperature dependence of this phase behavior of the mixed surfactant system, DSC and fluorescence polarization measurements were performed on the system. The experimental findings obtained revealed that pseudo-double-tailed CTAB/SOS complex, the major component of the bimolecular membrane formed by the surfactant mixture, undergoes a gel (Lbeta)-liquid crystal (Lalpha) phase transition at about 26 degrees C. This phenomenon was interpreted as showing that the bimolecular membrane has no curvature and is rigid and easy to precipitate at temperatures below the phase transition point, whereas it has a curvature and is loose enough to disperse in the solution as vesicles at temperatures above the phase transition point. Vesicles formed by the anionic/cationic surfactant complex were then stable at temperatures above the phase transition temperature of the complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号