首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
用Co(salen)/Nafion修饰铂电极对天然海水介质中的一氧化氮进行了测定,在最佳实验条件下,确定了Co(salen)/Nafion修饰电极的检出限是0.1 μmol/L,线性范围分别为0.1~1.0和1.0~9.9 μmol/L,相对标准偏差为0.24%,并且探讨了Co(salen)对NO的催化机理.  相似文献   

2.
Nafion修饰铂电极测定天然海水中一氧化氮   总被引:3,自引:0,他引:3  
用Nafion修饰铂电极测定天然海水介质中的一氧化氮。确定了富集时间、电极修饰时间、修饰膜厚度等最佳实验条件,同时用线性扫描伏安法对海水中的NO进行测定,测得NO的浓度与其氧化峰电流之间有一定线性关系,线性范围1~77μmol/L,r=0.9916;检出限0.4μmol/L;相对标准偏差0.5%,探讨了Nafion对NO的富集机理,并用N-亚硝基-乙腈霉胺分解法(SNAP)对本方法进行了验证。  相似文献   

3.
将一种杂环席夫碱N,N′-2,6-二乙酰吡啶缩双苯胺和Nafion修饰在铂电极上,然后与钴(Ⅱ)反应,得到Nafion-钴席夫碱膜修饰电极。实验结果表明,该修饰电极具有良好的机械、化学和电化学稳定性,对生物分子一氧化氮的电化学氧化有显著的催化作用。以1.5次微分线性扫描伏安法测定一氧化氮,当浓度在2.8×10  相似文献   

4.
一氧化氮在聚钴-席夫碱修饰电极上的电催化氧化   总被引:5,自引:0,他引:5  
研究了一种新合成的杂环席夫碱N,N’-二乙酰吡啶缩双苯胺在铂电极上的电化学聚合、聚合膜与钴(Ⅱ)的配合反应及聚合物膜的电化学性质。实验结果表明,该席夫碱可在电极表面通过电化学聚合反应形成具有良好的机械、化学和电化学稳定性的聚合物膜,该聚合物膜可与钴离子形成稳定的配合物,这种配合物对和分子一氧化氮的电化学氧化有显著的催化作用。  相似文献   

5.
6.
一氧化氮在大环铜配合物修饰电极上的电催化氧化及测定   总被引:7,自引:0,他引:7  
发现大环铜配合物 [Cu(Ⅱ )L]Cl2对一氧化氮( NO)具有电催化氧化作用( L=1, 8 - 二乙醇基 - 1, 3, 6, 8, 10, 13 - 六氮杂 - 14 - 冠 - 4) ; 研制成用于 NO伏安法测定的微铂盘 Nafion- Cu(Ⅱ )L膜修饰电极。当 NO 的浓度在 1.4× 10- 5 ~ 5.6× 10- 7 mol/L范围内氧化峰电流与 NO的浓度呈线性关系,相关系数为 0.994,亚硝酸、抗坏血酸、多巴胺等物质不干扰 NO测定。  相似文献   

7.
用玻碳电极为基体制成了TOPO修饰电极,研究了Au(Ⅲ)在该电极上的阴极溶出伏安特性,并用于痕量Au(Ⅲ)的测定。在1~20 ng/mL的范围内Au(Ⅲ)的浓度与峰高呈线性关系。同时,对电极反应的机理进行了讨论。  相似文献   

8.
研究了大环镍配合物/Nafion 膜修饰电极的制备方法和修饰电极对NO的电催化氧化性能、定量测定及抗干扰能力.NO 在修饰电极上的阳极峰电位比在裸电极上降低 230 mV,NO 浓度在 8.4×10-8~1.4×10-5 mol/L 范围内 , 阳极峰电流与 NO 的浓度呈线性关系,相关系数 r=0.999,检测限为 2.8×10-8 mol/L.抗坏血酸、NO2- 和儿茶酚胺类神经递质的代谢物等不干扰测定.  相似文献   

9.
锇-聚乙烯吲哚配合物修饰电极对肾上腺素的电催化氧化   总被引:11,自引:0,他引:11  
研究了配位聚合物锇 -聚乙烯吲哚 [Os( bpy) 2 ( PVI) 1 0 Cl]Cl和 Nafion双层膜修饰玻碳电极的电化学特性 ,该膜对肾上腺素 ( EP)的电化学氧化有催化作用 ,在通常的生理条件下 ( p H7.0 ) ,催化电流与 EP浓度在1 .0× 1 0 - 6~ 8.6× 1 0 - 5 mol/L范围内呈良好的线性关系 ,相关系数为 0 .9987.Nafion膜排除了抗坏血酸( AA)的干扰 ,表现出较高的灵敏度、选择性及良好的稳定性 .该电极可在 +2 50 m V下进行 EP的安培法测定 .用旋转圆盘电极对电催化过程的动力学进行了研究 ,催化速率常数 kch为 3 .53× 1 0 3mol- 1 · L· s- 1 .在较高 EP浓度下 ,催化电流与浓度的关系表现出 Michaelis-Menten型响应 ,Michaelis-Menten常数 Km 为1 .4 7mmol/L.  相似文献   

10.
采用电化学沉积法制备了纳米金修饰玻碳电极,并用循环伏安法和电化学阻抗法进行了表征,以此建立了一种直接测定鸟嘌呤的电分析方法。在磷酸盐缓冲溶液(pH 6.0)中,研究了鸟嘌呤在纳米金修饰电极上的电化学行为,实验结果表明,纳米金修饰电极可以增强鸟嘌呤在电极表面的吸附,并加快鸟嘌呤在电极表面的电子传输,使其电化学信号明显增大,检测灵敏度大大提高,该修饰电极对鸟嘌呤表现出良好的电催化性能。在优化实验条件下对鸟嘌呤进行测定,方法的线性范围为8.0×10-7~6.0×10-5mol/L,检出限为1.0×10-8mol/L,在鸟嘌呤浓度为1.0×10-5mol/L时测得RSD(n=10)为2.5%。  相似文献   

11.
将一种杂环席夫碱N,N′-2 ,6 -二乙酰吡啶缩双苯胺和Nafion修饰在铂电极上 ,然后与钴 (Ⅱ )反应 ,得到Nafion -钴席夫碱膜修饰电极。实验结果表明 ,该修饰电极具有良好的机械、化学和电化学稳定性 ,对生物分子一氧化氮的电化学氧化有显著的催化作用。以1.5次微分线性扫描伏安法测定一氧化氮 ,当浓度在2.8×10-6~8.4×10-8 mol/L范围时 ,氧化电流与浓度有良好的线性关系 ,抗坏血酸、精氨酸及亚硝酸根不干扰测定。  相似文献   

12.
纳米铜修饰玻碳电极的制备及其对葡萄糖的催化氧化   总被引:2,自引:1,他引:2  
在表面活性剂十六烷基三甲基溴化铵(CTMAB)的分散作用下,通过恒电位还原CuSO4在玻碳电极上沉积Cu,得到纳米Cu修饰玻碳电极(nano-Cu-GCE),该修饰电极对葡萄糖(Glu)的氧化具有明显的催化作用,利用该催化作用对Glu进行检测,通过研究沉积电位、沉积时间以及检测电位对电流信号的影响,优化了电极的制备条件和Glu的检测条件。沉积电位为-100mV,沉积时间8min。在检测电位400mV下,Glu在1.0×10-6~3.9×10-4mol/L范围内Glu电流与空白溶液电流值之差与其浓度呈线性关系,检出限为2.6×10-7mol/L(S/N=3),线性回归方程Δi(μA)=-1.02-125674.54C(mol/L),r=0.9981。抗坏血酸(AA)、对乙酰氨基酚(AP)和L-半胱氨酸(Cys)对Glu信号几乎无干扰。  相似文献   

13.
报道了溶胶 凝胶 钴 邻菲口罗啉膜修饰电极的制备方法及其在一氧化氮(NO)检测中的应用,采用循环伏安法(CV)研究修饰电极的电化学特性,差示脉冲伏安法(DPV)对NO进行检测。该修饰电极对NO的电化学氧化具有很好的催化作用,使其氧化电位负移了210mV,氧化峰电流与NO浓度在5.6×10-8~2.8×10-5mol/L范围内呈良好的线性关系,相关系数r=0.999,检测限为1.4×10-8mol/L,且生物体内常见的干扰物质如抗坏血酸、NO2-和儿茶酚胺类神经递质的代谢物等不干扰测定。  相似文献   

14.
本文利用滴涂于玻碳表面的Nafion膜中负电性的磺酸基与天青I阳离子之间的静电作用,以实现天青I的固定化,从而制备出Nafion/天青I电催化型烟酰胺腺嘌呤二核苷酸(NADH)传感器。采用循环伏安法考察了传感器的电化学性质,并研究了该修饰电极对NADH的电催化作用。实验结果表明:该修饰电极对NADH有良好的电催化作用,NADH氧化峰电位比未修饰的玻碳电极负移了660 mV,响应电流与NADH的浓度在8.7×10-5~1.5×10-2mol/L范围内呈良好的线性关系。该方法检出限为3.0×10-5mol/L。  相似文献   

15.
陈贤光  王壬  赵国芳  邹小勇 《分析化学》2006,34(8):1063-1067
采用循环伏安(CV)法制备了聚对苯二酚薄膜修饰玻碳电极,利用其电催化氧化作用建立了抗坏血酸的定量分析方法,探讨了其催化氧化机理。研究发现:在0.2 mol/L Na2HPO4-NaH2PO4(PBS,pH 7.0)缓冲溶液中,以0.1 mol/L KC l作支持电解质,聚对苯二酚修饰电极(PHQ/CME)对抗坏血酸(AA)存在灵敏的催化氧化作用,氧化峰电位负移177 mV。应用微分脉冲伏安法(DPV)对AA进行定量分析,其氧化峰电流与AA浓度在3.3×10-5~1.7×10-2mol/L和1.7×10-2~1.2×10-1mol/L范围内呈良好的线性关系,检出限为3.3×10-6mol/L。机理研究结果表明:PHQ/CME上带有的酚羟基与脱氢抗坏血酸自由基之间形成的氢键是电催化氧化的主要原因。  相似文献   

16.
聚硫堇修饰微带金电极的性质及对NADH的催化氧化   总被引:12,自引:0,他引:12  
报道了硫堇在微带金电极上的电化学聚合过程,用红外光谱对聚硫堇进行了表征;研究了聚硫堇的电化学性质,发现聚硫堇在+0.5~-0.7V(vs.SCE)电位范围内有两对氧化还原峰,峰电位分别为:E=-0.03V、E=0.05V,E=-0.24V、E=-0.17V(vs.SCE)。它们的式量电位E~(o')随pH而变化,在弱酸性溶液中,E~(o')/pH为-29mV/pH(25℃);而在弱碱性溶液中则为-56mV/pH。聚硫堇修饰微带金电极对NADH的氧化具有催化作用,文中对电催化过程进行了探讨。  相似文献   

17.
本文先在Au电极表面自组装硫辛酰胺(T-NH_2),再利用电化学还原的方法将还原氧化石墨烯(ERGO)和纳米金(AuNPs)电沉积到T-NH_2表面,采用循环伏安法考察了电极的电化学性能。实验表明,该修饰电极对多巴胺(DA)具有良好的电催化作用,优化条件下,DA的氧化峰电流与其浓度在6.49×10~(-6)~7.62×10~(-3) mol/L范围内呈良好的线性关系(R=0.996),检出限为2.0×10~(-6) mol/L。  相似文献   

18.
单壁碳纳米管修饰玻碳电极对L-半胱氨酸的催化氧化及分析应用;L-半胱氨酸; 单壁碳纳米管; 化学修饰电极; 电催化氧化  相似文献   

19.
考察了中性分子电对H2Q/Q在13X型分子筛修饰电极上的电化学行为。发现H2Q/Q电对在修饰电极上电响应迅速,为双电子可逆反应,不受溶液温度及是电极与溶液相对运动的影响,而与溶液的pH值有关。当pH≤2.0时,修饰电极对H2Q/Q电对的氧化/还原有明显的催化作用。  相似文献   

20.
在玻碳电极上用循环伏安法电聚合一层聚甲苯胺蓝膜,该膜修饰电极对抗坏血酸(VC)的氧化具有良好的电催化作用,能够降低其过电位约100mV。将该修饰电极应用于流动注射能大大提高VC的检测灵敏度,其线性范围为2.0×10-7~1.2×10-3mol·L-1,检出限为4.8×10-8mol·L-1,连续注射检测,其电流信号能够保持稳定24h。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号