首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The temperature dependences of the magnetization σ(T), magnetostriction λ(T), and linear thermal expansion coefficient α(T) of R 2Fe14B intermetallic compounds (R = Nd, Gd, Er, Lu) and of their hydrides R 2Fe14BH2.5 are studied. The magnetization was measured with a pendulum magnetometer within the temperature interval 77–700 K in a magnetic field H = 500 Oe. Magnetostriction and thermal expansion were measured using the tensometric technique in the temperature interval 77–420 K. It was established that Gd2Fe14BH2.5 undergoes a spin-reorientational (SR) transition at T SR = 235 K. In compounds with Nd and Er, anomalies associated with the SR transition were found in the σ(T), λ(T), and α(T) curves. The SR transition temperatures were refined and magnetic phase diagrams were constructed for the compounds studied. The α(T) curves of the R 2Fe14BH2.5 hydrides (R = Nd, Er) revealed anomalies of a nonmagnetic origin associated with hydrogen ordering in the crystal lattice of these compounds.  相似文献   

2.
The two lowest energy spectral lines of the shallow donors in InSb involving ground to excited state transitions are studied in photoconductivity using higher spectral resolution and stronger magnetic fields than achieved previously. The observed line positions are compared with recent calculations of the high field hydrogenic donor levels and difference of the order of the effective Rydberg R1 at zero field are found at magnetic fields where the zero point cyclotron energy exceeds R1 by two orders of magnitude. Central-cell components of the 1s–2p transition, corresponding to four donor species are resolved, and the magnetic field dependence of the relative chemical shifts are analysed. The broader 1s–2p0 line undergoes a coupling at an interaction energy of 37 cm-1, the origin of which is uncertain at present.  相似文献   

3.
Ultrasonic sound velocity measurements have been carried out in order to determine the elastic moduli, adiabatic compressibility and the Debye temperature of polycrystalline rare earth-cobalt Laves phase compounds RCo2(R = Pr, Nd, Sm, Gd, Tb, Dy, Ho, ErandLu) and YCo2 between 4.2 and 300 K. DyCo2 HoCo2 and ErCo2 exhibit a first-order transition at Tc. In SmCo2 and TbCo2 the phase transition is of the second-order accompanied by a large lattice softening. NdCo2, GdCo2 and HoCo2 show spin reorientations from one easy direction of magnetization to another one, at low temperatures, below Tc.The influence of an external magnetic field (up to 25 kOe) on the elastic properties of these Laves phases, the so-called ΔE effect was determined. No saturation was reached in SmCo2, TbCo2 and DyCo2 in magnetic fields up to 25 kOe. The behavior of the RCo2 compounds was compared with that of RFe2, published earlier.  相似文献   

4.
A phase transition from the paramagnetic state to the long-period magnetic structure in RMn2O5 oxides with the star of the wave vector determining the incommensurability of long-range magnetic order in two spatial directions has been investigated. An effective Hamiltonian of the system that allows one to describe this transition in the framework of the renormalization group approach has been constructed. It has been shown that there is a stable critical point of transformations of this group at which there occurs a second-order phase transition. The critical indices have been found. The obtained results have been compared with the results for phase transitions occurring in these oxides in accordance with the star of the wave vector, which provides incommensurability in one of the spatial directions. It has been found that fluctuations of the four-component order parameter due to the low spatial symmetry of these compounds do not change the order of the phase transition, which was found in terms of the Landau theory.  相似文献   

5.
The magnetic susceptibility of RB2C2 has been measured in the temperature range of 3–300 K. Curie-Weiss fits to the susceptibilities led to effective moments in agreement with those expected for R3+ ions. The RB2C2 (R = Ce, Nd, Sm, Gd, Tb, Er, and Tm) compounds are antiferromagnetic. Metamagnetic transitions at low fields were observed for CeB2C2 and TbB2C2. The compounds, DyB2C2 and HoB2C2, are ferromagnets with complex magnetic structures. Praseodymium borocarbide becomes a Van Vleck paramagnet at low temperature. The magnetic ordering temperatures of these compounds are discussed in terms of their crystal structure and the RKKY theory.  相似文献   

6.
The magnetic properties of the R Au2Si2 compounds with R = Ce-Er have been investigated. It was found that the compounds for which R = Ce, Sm, Gd, Tb and Dy are antiferromagnetically ordered at temperatures ranging from 5.7 to 15.9°K. PrAu2Si2 and NdAu2Si2 exhibit paramagnetic behavior for temperatures as low as 4.2°K. The magnetic structure is ferrimagnetic for the compounds in which R = Eu, Ho, and Er. The Eu compound is in the divalent state. The Néel and Curie points for this system do not follow the De-Gemnes function. Curie-Weiss Behavior is exhibited by all the compounds with effective moments in good agreement with that of a free tripositive lanthanide ion. The difference in magnetic properties between R Au2Si2 and the isomorphous R Fe2Si2 series is discussed.  相似文献   

7.
The effect of the structural state on magnetic and hysteretic properties of compounds with high contents of a 3d transition metal, i.e., R 2Fe14 ? x Co x B and RFe11 ? x Co x Ti (where R = Y, Sm; 0 ≤ x ≤ 8), was studied. Alloys were prepared using high-purity rare-earth metals by two different methods: induction melting and argon-arc melting. Severe plastic deformation and rapid melt-quenching allowed preparation of nanostructured samples. Structural studies of the samples were performed by X-ray powder diffraction and atomic-force microscopy methods. Magnetic hysteretic properties were studied using a PPMS magnetometer in the temperature range of 4.2–300 K in fields to 20 kOe. It was shown that the dependences of fundamental magnetic parameters (Curie temperature, saturation magnetization, and magnetocrystalline anisotropy constant) on the cobalt content exhibit a similarity for both systems. It was found that, depending on sample treatment, the grain size varies from 30 to 70 nm after severe plastic deformation and in wider ranges (from 10 to 100 nm) after rapid quenching, not exceeding the single-domain size. The interrelation between the microstructure and magnetic characteristics was investigated. It was revealed that the concentration dependence of the coercivity for both systems has a maximum at the same cobalt content, i.e., x = 2.  相似文献   

8.
The HoMn2 compound crystallizes in the cubic C15 or hexagonal C14 Laves phases depending on preparation. The effect of hydrogen absorption on structural and magnetic properties of HoMn2Hx hydrides for the C14 phase has been investigated by XRD and AC/DC magnetometry in the temperature ranges of 75-380 K and 4-390 K, respectively. In addition to general features revealed by RMn2Hx compounds (R=rare earth or Yttrium), unusual behavior of these hydrides was found. In particular, a transformation from the hexagonal to the monoclinic structure was detected, the same as that observed for cubic HoMn2Hx compounds. The structural transformations are correlated to the magnetic behavior. The presented results are compared mainly with the properties of the cubic HoMn2Hx hydrides as well as with those of other RMn2Hx hydrides. Tentative magnetic and structural phase diagrams are proposed.  相似文献   

9.
The Hall coefficient R H and magnetoresistance of a magnetic Kondo lattice of CeAl2 were investigated over a wide temperature range from 1.8 to 300 K in magnetic fields of up to 80 kOe. Analysis of the measured angular dependences R H(?, T, H) made it possible to separate the contributions of skew scattering and anomalous magnetic scattering to the anomalous Hall effect. The results obtained were compared with the existing theoretical models.  相似文献   

10.
We have carried out specific heat measurements on EuIn2P2 at high magnetic fields perpendicular to the c-axis in the hexagonal crystal structure in order to understand its thermal properties. The temperature dependence of the specific heat exhibits a clear λ-type anomaly due to a magnetic transition at , indicating that the magnetic transition is of second-order. The λ-type anomaly becomes markedly broader with increasing the magnetic field. This remarkable field-dependence is consistent with the results of previous magnetization measurements which suggest that Eu2+ magnetic moments align ferromagnetically perpendicular to the c-axis below TC. In addition, a hump in the specific heat is observed around 7 K, which can be ascribed to the Zeeman splitting of the Eu2+ multiplet by internal magnetic fields.  相似文献   

11.
The Mössbauer effect provides a direct method for identifying the spin axis in magnetic crystals and observing magnetic phase transitions. The order of the transition may be inferred from the Mössbauer spectrum. Phase changes can occur as a function of temperature (e.g. when the anisotropy fieldB A changes sign) or as a function of applied magnetic field. In an antiferromagnet a field ?(2B E B A)1/2 along the spin axis whereB E is the exchange field causes the spin-flop transition which is normally first order (sharp) whereas the transition to the paramagnetic phase which occurs at higher fields?2B E is second order (continuous). In quasi-one-dimensional crystals Mössbauer spectra show that the spin-flop transition is first order locally but occurs over a range of fields throughout the crystal, so that the first order character is masked in a conventional magnetization measurement. In fields applied at a finite angle>B A/2B E to the spin axis the transition becomes second order, i.e. a continuous rotation of the spins occurs. In canted antiferromagnets (or weak ferromagnets) the spin-flop transition is also continuous; in addition a “screw” re-orientation may be induced by fields applied perpendicular to the spin axis and arises from antisymmetric exchange. For crystals with lowT N the hyperfine field changes when a magnetic field is applied and has a minimum at a phase transition; this may be used to map out the magnetic phase diagram.  相似文献   

12.
Magnetic ordering in the RMnSi (R=La, Y, Sm, and Gd) compounds is investigated. It is found that the type of magnetic ordering depends on the d Mn-Mn distance between manganese atoms inside the magnetic layers located in the planes perpendicular to the c axis. This inference is based on the results of studies performed with SmMnSi and GdMnSi compounds in which the distances between manganese atoms are close to the critical value d Mn-Mn that corresponds to the crossover between ferromagnetic and antiferromagnetic ordering in RMnSi compounds. The introduction of lanthanum and yttrium atoms into the rare-earth sublattice leads to an increase and a decrease in the unit cell size, respectively, and brings about magnetic phase transitions in the compounds under investigation.  相似文献   

13.
Magnetic susceptibility, heat capacity and electrical resistivity measurements have been carried out on a new ruthenate, La2RuO5 (monoclinic, space group P21/c) which reveal that this compound is a magnetic semiconductor with a high magnetic ordering temperature of 170 K. The entropy associated with the magnetic transition is 8.3 J/mol K close to that expected for the low spin (S=1) state of Ru4+ ions. The low temperatures specific heat coefficient γ is found to be nearly zero consistent with the semiconducting nature of the compound. The magnetic ordering temperature of La2RuO5 is comparable to the highest known Curie temperature of another ruthenate, namely, metallic SrRuO3, and in both these compounds the nominal charge state of Ru is 4+.  相似文献   

14.
The magnetic properties and the magnetocaloric effects of RCuAl (R=Ho and Er) compounds have been investigated. Both HoCuAl and ErCuAl just undergo a second-order ferromagnetic–paramagnetic phase transition at TC. Large reversible magnetic entropy changes (ΔSM) are observed around their respective Curie temperatures due to the ferromagnetic–paramagnetic phase transition. For a field change of 0–5 T, the peak values of −ΔSM of RCuAl (R=Ho and Er) compounds are 23.9 and 22.9 J kg−1 K−1 at TC, with the values of refrigerant capacity of 393 and 321 J kg−1, respectively. These properties suggest that RCuAl (R=Ho and Er) compounds could be considered as attractive magnetic refrigerants working in low temperature range.  相似文献   

15.
Critical relaxation from a low-temperature fully ordered state of Fe2/V13 iron-vanadium magnetic superlattice models has been studied using the method of short-time dynamics. Systems with three variants of the ratio R of inter-to intralayer exchange coupling have been considered. Particles with N = 262144 spins have been simulated with periodic boundary conditions. Calculations have been performed using the standard Metropolis algorithm of the Monte Carlo method. The static critical exponents of magnetization and correlation radius, as well as the dynamic critical exponent, have been calculated for three R values. It is established that a small decrease in the exchange ratio (from R = 1.0 to 0.8) does not significantly influence the character of the short-time dynamics in the models studied. A further significant decrease in this ratio (to R = 0.01), for which a transition from three-dimensional to quasi-two-dimensional magnetism is possible, leads to significant changes in the dynamic behavior of iron-vanadium magnetic superlattice models.  相似文献   

16.
Crystallographic and magnetic properties of PrMn2Si2, NdMn2Si2, YMn2Si2 and YMn2Ge2 intermetallics were studied by X-ray, neutron diffraction and magnetometric measurements. The crystal structure of all four compounds was confirmed to be body-centered tetragonal (space group I4/mmm). All were found to be antiferromagnetic with Néel points at 368, 380, 460 and 395 K respectively. Neutron diffraction results indicate that their magnetic structure consists of ferromagnetic layers composed of Mn ions piled up along the c-axis. Each layer is antiferromagnetically coupled to adjacent layer. The magnetic space group is Ip4/mmm′. No magnetic ordering of the R sublattice was observed at 1.8 K in the case of R = Pr and Nd.  相似文献   

17.
We have studied RNiGe3 (R=Y, Ce-Nd, Sm, Gd-Lu) single crystals by measuring crystal structure and stoichiometry, magnetic susceptibility, magnetization, electrical resistivity, magnetoresistance, and specific heat. Clear anisotropies as well as antiferromagnetic ordering in the RNiGe3 series (R=Ce-Nd, Sm, Gd-Tm) have been observed above 1.8 K from the magnetic susceptibility. A metamagnetic transition in this family (except for R=Sm) was detected at 2 K for applied magnetic fields below 70 kOe. The electrical resistivity of this series follows metallic behavior in the high temperature region. Below the antiferromagnetic ordering temperature a significant anisotropy is exhibited in the resistivity and magnetoresistance for different current directions. The anisotropic magnetic, transport, and thermal properties of RNiGe3 compounds are discussed in terms of Ni site occupancy as well as a combination of the effect of formation of a magnetic superzone gap and the crystalline electric field.  相似文献   

18.
The R2Fe14B phase has been found to exist for R=Yb. The magnetic properties presented in this paper complete the characterization of the compounds in this series for which the Stevens αJ coefficient of the R3+ ion is positive. 57Fe Mössbauer spectroscopy establishes the existence of a magnetization reorientation at 115 K of the type observed in Er and Tm compounds associated with a small Fe magnetization anisotropy. From the neutron diffraction measurements obtained at 4.2 K with and without an applied magnetic field, the easy direction of magnetization was found to be along the [100] direction, in the basal plane of the tetragonal structure. These results show that in all compounds where αJ>0 for the R3+ ion, the easy direction of magnetization in the plane is determined by the second order crystal field terms and rare earth-Fe exchange interactions and is independent of the sign of the 4th order crystal field terms.  相似文献   

19.
We have measured the far-infrared absorption of iron-doped MgO in the wavenumber region 10–200 cm?1 and in magnetic fields up to 6 T. Absorption peaks found at 107.0 and 110.5 cm?1 are assigned to magnetic dipole transitions between the spin-orbit Г5g groundstate (J = 1) and the Г3g, Г4g excited states (J = 2) of the Fe2+ -ion at a cubic site. The observed magnetic field dependence shows that Г4g is the higher excited level, so that the crystal field order of the levels is not changed by the reduction of the spin-orbit splitting attributed to a dynamic Jahn-Teller effect. An additional absorption peak at 33.4 cm?1 is found to split in magnetic field.In iron-doped KMgF3 absorption peaks at 52 and 87 cm?1 that have previously been attributed to the same transitions of Fe2+ are found to remain unshifted and unsplit in magnetic fields up to 6 T.  相似文献   

20.
《Solid State Ionics》2006,177(26-32):2657-2660
The compounds Li(4−x)/3Mn2(1−x)/3CoxO2 (0 < x < 0.5) were prepared by the sol–gel technique. X-ray diffraction patterns of these compounds were identified as α-NaFeO2 type layered structure, though some super-structure lines, related to the ordered array of Li and transition metal ions in the transition metal layer, were observed. The magnetic susceptibility exhibited an antiferromagnetic transition around 40 K for x < 0.2, however the specimens with x > 0.3 had no magnetic transition. The magnetic percolation may explain these magnetic variations. The electrochemical performances were evaluated for the compound of x = 0.5, and it was seen that the electrochemical properties were sensitive to the potential window. Additionally, it was also found that the discharge capacity strongly depended on the preparation temperature; it took a maximum value at the preparation temperature of 900 °C. The discharge capacity is sensitive not only to the cation mixing degree but also to the particle size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号