首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The average multiplicity of gamma rays emitted by fragments originating from the fission of 226Th nuclei formed via a complete fusion of 18O and 208Pb nuclei at laboratory energies of 18O projectile ions in the range E lab = 78–198.5 MeV is measured and analyzed. The total spins of fission fragments are found and used in an empirical analysis of the energy dependence of the anisotropy of these fragments under the assumption that their angular distributions are formed in the vicinity of the scission point. The average temperature of compound nuclei at the scission point and their average angular momenta in the entrance channel are found for this analysis. Also, the moments of inertia are calculated for this purpose for the chain of fissile thorium nuclei at the scission point. All of these parameters are determined at the scission point by means of three-dimensional dynamical calculations based on Langevin equations. A strong alignment of fragment spins is assumed in analyzing the anisotropy in question. In that case, the energy dependence of the anisotropy of fission fragments is faithfully reproduced at energies in excess of the Coulomb barrier (E c.m. ? E B ≥ 30 MeV). It is assumed that, as the excitation energy and the angular momentum of a fissile nucleus are increased, the region where the angular distributions of fragments are formed is gradually shifted from the region of nuclear deformations in the vicinity of the saddle point to the region of nuclear deformations in the vicinity of the scission point, the total angular momentum of the nucleus undergoing fission being split into the orbital component, which is responsible for the anisotropy of fragments, and the spin component. This conclusion can be qualitatively explained on the basis of linear-response theory.  相似文献   

2.
Independent isomeric yield ratios of128Sb were determined radiochemically in the thermal neutron induced fission of241Pu and 34 MeV alpha particle induced fission of238U, both involving the same compound nucleus (242Pu). Fragment angular momenta estimated from the measured isomer ratios using the statistical model analysis showed significantly larger fragment angular momenta in the medium energy fissioning system compared to the low energy fissioning system. This has been attributed to the effect of higher excitation energy and angular momentum in the entrance channel leading to increased fragment temperature, moments of inertia and angular velocity. An attempt was made to calculate the fragment angular momentum in the medium energy fission using the Fermi gas model for the fissioning nucleus, taking into account the multichance fission, saddle shapes of the fissioning nuclei and the angular velocity components of the fissioning nuclei both along and orthogonal to the fission axis. The calculated angular momenta agree well with the experimental results.  相似文献   

3.
Based on the dinuclear system concept, the role of bending vibrations in creation of the angular momentum of primary fission fragments is investigated. For 252Cf spontaneous fission, the angular momenta of the fragments are calculated as a function of the neutron multiplicity and compared with available experimental data. Different cluster compositions of the 252Cf fission modes at the scission point are considered.  相似文献   

4.
The angular distributions of fragments originating from the binary fission of odd and odd-odd nuclei capable of undergoing spontaneous fission that are polarized by a strong magnetic field at ultralow temperatures and from the low-energy photofission of even-even nuclei that is induced by dipole and quadrupole photons are investigated. It is shown that the deviations of these angular distributions from those that are obtained on the basis of the A. Bohr formula make it possible to estimate the maximum relative orbital angular momentum of fission fragments, this estimate providing important information about the relative orientation of the fragment spins. The angular distributions of fragments originating from subthreshold fission are analyzed for the case of the 238U nucleus. A comparison of the resulting angular distributions with their experimental counterparts leads to the conclusion that the maximum relative orbital angular momentum of binary-fission fragments exceeds 20, the fragment spins having predominantly a parallel orientation. The possibility is considered for performing an experiment aimed at measuring the angular distributions of fragments of the spontaneous fission of polarized nuclei in order to determine both the spins of such nuclei and the maximum values of the relative orbital angular momenta of fission fragments.  相似文献   

5.
A dynamic approach to the calculation of angular distributions of fission and quasi-fission fragments is proposed. The approach is tested in the analysis of the experimental data for the 28Si, 32S + 208Pb reactions at E lab = 160–280 MeV. Dependence of the relaxation time for the degree of freedom related to the projection of the angular momentum onto the symmetry axis of the decaying system on the deformation and the angular momentum is discussed.  相似文献   

6.
The experimental data concerning scission (or prescission) neutrons are very contradictory—the relative part of these neutrons in the prompt fission neutrons varies from 1 to 35% owing to arbitrary assumptions made in different analyses. To solve this problem, we have used a new alternative method to search for the scission neutrons. We have found the left-right asymmetry of prompt-fission-neutron (PFN) emission caused by sp-wave interference in the entrance channel of the reaction and the P-odd asymmetry of the PFN emission caused by parity nonconservation at the exit channel of the fission process. Both effects cannot reside in PFN evaporated by excited fission fragments. The scission (or prescission) neutrons are responsible for these effects. The text was submitted by the authors in English.  相似文献   

7.
The angular momentum misalignment for fragments produced in deep inelastic scattering is discussed in terms of the thermal excitation of angular-momentum-bearing modes in the intermediate complex. Analytical expressions for the in- and out-of-plane angular distributions are obtained for sequentially emitted particles and fission fragments. The angular momentum dependence of the ratio between particle and neutron decay widths is explicitly treated and found to be quite important. Similarly angular distributions are obtained both for dipole and quadrupole gamma decay. The theoretical results are compared with experimental angular distributions of sequential fission fragments, sequential alphas and gamma rays, and a good agreement is found.  相似文献   

8.
Anisotropy in the angular distributions of cascade-evaporation neutrons in center-of-mass systems emitting their fission fragments is analyzed in the context of the quantum theory of fission. It is emphasized that such anisotropy is caused not by bending but by wriggling oscillations of the fissioning nucleus in the vicinity of its point of scission; these lead to the appearance of high-value spins of primary fission fragments [(J)\vec]1\vec J_1 and [(J)\vec]2\vec J_2 oriented in a plane perpendicular to direction [(n)\vec]0\vec n_0 of the axis of symmetry of the fissioning nucleus at the instant of scission. This direction coincides with the asymptotic direction of the emission of fission fragments with a high degree of accuracy. The analytical dependences of the anisotropy coefficient on the orbital momentum l and total spin j in angular distributions of cascade-evaporation neutrons are calculated using the methods developed in analyzing angular distributions of cascade-evaporation gamma quanta. The proper spin of a neutron is shown to have almost no effect on the aforesaid anisotropy coefficient due to the weak dependence of the neutron transmission coefficient T lj ([`(e)]\bar \varepsilon ) on the values of j.  相似文献   

9.
A dynamical approach is proposed for calculating the angular distributions of fission fragments. The relaxation time for the degree of freedom associated with the projection of the total angular momentum of the nuclear system onto the symmetry axis and the coefficient of damping of the fission mode are the basic parameters of this approach. Experimental data on the anisotropy of the angular distributions of fission fragments and on the multiplicities of prescission neutrons are analyzed within the proposed model for 16O+208Pb (E lab=110–148 MeV), 16O+232Th (120–160 MeV), 16O+248Cm (110–148 MeV), and 16O+238U (96–148 MeV). The relaxation time and the damping coefficient are estimated at τK=(5–6)×10?21 s and β=4×1021 s?1, respectively.  相似文献   

10.
Quantitative explanation for the odd-even effect on fragment angular momenta in the low-energy fission of actinides have been provided by taking into account the single particle spin of the odd proton at the fragment’s scission point deformation in the case of odd-Z fragments along with the contribution from the population of angular momentum bearing collective vibrations of the fissioning nucleus at scission point. The calculated fragment angular momenta have been found to be in very good agreement with the experimental data for fragments in the mass number region of 130–140. The odd-even effect observed in the fragment angular momenta in the low-energy fission of actinides has been explained quantitatively for the first time.   相似文献   

11.
We consider solutions to some of the difficulties which arise when Hartree-Fock-Bogoliubov equations are solved at high angular frequency. These are mainly associated with the fact that then instead of particles always decoupling in pairs, may do so singly and hence lead to quasi-particle wavefunctions containing an odd number of particle components in the quasiparticle wave function. These solutions then also lead to a satisfactory, reliable and fast method for connecting the upper and lower branches of the moment of inertia versus square of the angular frequency curve, and usually reproduce the typical S-shape of the curve. We also show the importance of higher (> 0) particle-particle channel coupled angular momentum of the nucleon-nucleon potential for the rotational spectrum of deformed nuclei at high angular momentum. Some unsolved problems and peculiar cases which arise during the solution of Hartree-Fock-Bogoliubov equations are mentioned in the end, which may be a reflection on the unsatisfactory nature of the present method of obtaining higher angular momentum rotational bands.  相似文献   

12.
The process of instantaneous fission in deep inelastic collisions is investigated in a classical model. Kinetic energies and angular distributions of the fragments are calculated for the proposed reaction Pb+U atE cm inc =750 MeV; an experimental setup for the separation of the fragments originating from instantaneous fission from the fragments of thermal fission is explained. We also discuss fusion following instantaneous fission as a mechanism for the production of superheavy elements and arrive at rather promising estimates.  相似文献   

13.
We discuss the coupling of a quantum system through the angular momentum to the reservoir of quantum harmonic oscillators. In classical mechanics an observation of the oscillator trajectories allows one to determine the system's angular momentum. We discuss the quantum dynamics of the model. We show that the model of an observation of environmental coordinates can be related to some models of angular momentum measurement based on a stochastic Schrödinger equation.  相似文献   

14.
Angular correlations and angular distributions of the fission fragments produced in the bombardment of a 232Th target with protons, deuterons and α-particles in the energy range between 35 and 1000 MeV/nucleon have been measured. From these measurements, the distributions of linear momentum imparted to fissioning nuclei have been deduced in the various energy regimes; dominating reaction mechanisms are classified according to the fraction of the available incident momentum transferred to the target. The experimental results are compared to the predictions of intra-nuclear cascade calculations. An optimum excitation energy supported by the fissioning nuclei could be the dominant limitation to momentum transfer at high incident energies. The angular distributions of the fission fragments were used to extract fission cross sections and upper limits of the angular momentum imparted to the fissioning nuclei.  相似文献   

15.
16.
We analyze the orbital angular momentum (OAM) crosstalk of single photons propagation through low-order atmospheric turbulence. The probability models of the orbital angular momentum crosstalk for single photons propagation in the channel with the non-Kolmogorov turbulence tilt, coma, and astigmatism and defocus aberration have been established. It is found, for α = 11/3, that the turbulent tilt is the dominant aberration which causes the orbital angular momentum crosstalk, the coma is second and the astigmatism is third, but the defocus aberration has no impact on OAM. The results also indicate that the regularities of orbital angular momentum crosstalk caused by the tilt, the coma and the astigmatism are almost the same, respectively. The crosstalk probability of the orbital angular momentum increases as the azimuth mode index p of Laguerre-Gaussian (LG) beam increases, the turbulent strength Cn2 enhances, the orbital angular momentum quantum number rises, the diameter of circular sampling aperture D and the channel zenith angle θ increase.  相似文献   

17.
Binary and ternary cluster decay of 60Zn compound nuclei at high angular momentum, formed in the 36Ar + 24Mg reaction at E lab(36Ar) = 195 MeV, has been measured in a unique kinematic coincidence setup consisting of two large area position sensitive (x, y) gas detector telescopes with Bragg-ionization chambers (BRS). The BRS provides the opportunity to measure the reaction angles in-and out-of-plane, and through Bragg-curve spectroscopy to achieve a complete identification of the nuclear charge for different final channels. We observed very narrow out-of-plane angular correlations for two heavy fragments emitted either in purely binary events or in events with a missing mass consisting of 2 and 3α particles. These narrow correlations are interpreted as ternary fission decay from compound nuclei at high angular momenta through an elongated (hyperdeformed) shape with a very large moment of inertia. In these stretched configurations, the lighter mass in the neck region remains at rest or with very low momentum in the center of mass. The text was submitted by the authors in English.  相似文献   

18.
In-plane and out-of-plane angular correlations of fission fragments in coincidence with projectile-like fragments have been measured for the 86Kr + 238U reaction at 730 MeV. The dependence of the magnitude and alignment of the angular momentum transferred to the fissioning heavy reaction product has been determined. Both quantities decrease strongly with decreasing energy loss in the quasi elastic region, in agreement with the predictions of a transport model.  相似文献   

19.
The angular distributions of sequential fission fragments have been measured for the reactions of 40Ar with 197Au and 238U as a function of reaction Q-value and charge transfer. These angular, distributions are used to study the angular momentum and alignment of the deep-inelastic products which undergo fission. All of the fission fragment angular distributions are strongly focused into the plane defined by the beam and the projectile-like fragment velocity vectors. The in-plane angular distributions from reactions with uranium are isotropic for small energy losses and become anisotropic as the energy loss increases. For large negative Q-values, the in-plane anisotropy increases as the deep-inelastic products become more symmetric. The variation of the in-plane anisotropy with mass asymmetry for the two systems in this work was compared to a compilation of previous work and a consistent pattern was found. These alignment data are compared to equilibrium statistical calculations.  相似文献   

20.
R K Jain  S K Bose  J Rama Rao 《Pramana》1995,45(6):519-531
Using Lexan polycarbonate plastic as the fission fragment track detectors, the fragment angular distributions have been measured in the cases of fission of232Th and238U induced by alpha particles of various energies ranging from 40 to 70MeV obtained from the 88″ variable energy cyclotron at Calcutta. The center-of-mass angular distributions have been calculated and fitted by a series of Legendre polynomials. TheW(10°)/W(90°) ratios (defined as anisotropy) were measured at several energies for both the targets. These data are utilized in calculation of the energy dependence ofK 0 2 , the standard deviation of the distribution in the angular momentum projection on the nuclear symmetry axis at the saddle point. Values of Γ f η , i.e. the ratio of the fission width to neutron emission width have been determined for232Th and238U nuclei. The integral cross-section for alpha induced fission in each target was determined by numerical integration of the respective center-of-mass angular differential cross-sections. The results were compared with similar data available in the literature which served to resolve some of the discrepancies observed in earlier measurements. The results were also compared with theoretical cross-sections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号