首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The forces acting between nonpolar surfaces coated with the nonionic surfactant n-dodecyl-beta-D-maltoside (beta-C(12)G(2)) were investigated at concentrations below and above the critical micelle concentration. The long-range and adhesive forces were measured with a bimorph surface force apparatus (MASIF). It was found that the effect of hydrodynamic interactions had to be taken into account for an accurate determination of the short-range static interactions. The results were compared with disjoining pressure versus thickness curves that were obtained earlier with a thin film pressure balance (TFPB). This comparison led to the conclusion that the charges observed at the air-water interface are not due to charged species present in the surfactant sample. In addition, it was observed that the stability of thin liquid films crucially depends on the surfactant's bulk concentration (c) and thus on the packing density in the adsorbed layer. The force barrier preventing removal of the surfactant layer from between two solid-liquid interfaces increases with increasing c, while for foam films it is the stability of the Newton black film that increases with c. Finally, the results obtained for beta-C(12)G(2) were compared with those obtained for the homologue n-decyl-beta-d-maltoside (beta-C(10)G(2)) as well as with those obtained for nonionic surfactants with polyoxyethylene moieties as polar groups.  相似文献   

2.
The interactions between a hydrophilic anionic polysaccharide, dextran sulfate, and oppositely charged surfactants, n-alkylammonium chlorides (the number of carbon atoms per chain being 10, 12, and 14), were investigated by optical microscopy, X-ray diffraction, microelectrophoretic mobility, conductivity, surface tension, and light-scattering measurements at 303 K. The increase of surfactant alkyl chain length shifts both the critical aggregation (cac) and the critical micelle concentrations (cmc) toward lower surfactant concentration. Light-scattering and microelectrophoretic data revealed the coexistence of differently structured complexes beyond the cac. The presence of giant vesicles indicates that at least one type of species is ordered in bilayers. X-ray analysis of dry n-alkylammonium dextran sulfates exhibited mesomorphous ordering and interplanar spacings typical for lamellar structures; i.e., n-alkylammonium molecules form more or less disordered bilayers interconnected with dextran sulfate chains, thus forming multilamellar stacks. The average basic lamellar thickness increased linearly with the increase of surfactant chain length, whereas the average number of lamellar bilayers in the stack of lamellae decreases.  相似文献   

3.
Wetting of low-energy solid surfaces (polymers, hydrophobized glass) with aqueous solutions of binary mixtures of cationic and nonionic surfactants was investigated at molar fractions of the cationic surfactant of 0.2, 0.5, and 0.8. In a narrow concentration range, the non-additive effect of wetting was observed: wetting of the solid surfaces with solutions of the mixtures is better than that would be expected from the additive behavior of the components. The magnitude of the effect depends on the surface energy of the solid substrate, total surfactant concentration in a mixture, and molar fraction of the cationic component. The wetting effect of surfactant mixtures with respect to low-energy solid surfaces can be predicted using the surface tension isotherms.  相似文献   

4.
Forces have been measured between silica surfaces with adsorbed surfactants by means of a bimorph surface force apparatus. The surfactants used are the cationic surfactant tetradecyltrimethylammonium bromide (TTAB) and the nonionic surfactant hexakis(ethylene glycol) mono-n-tetradecyl ether (C(14)E(6)) as well as mixtures of these two surfactants. The measurements were made at elevated pH, and the effect of salt was studied. At high pH the glass surface is highly charged, which increases the adsorption of TTAB. Despite the low adsorption generally seen for nonionic surfactants on silica at high pH, addition of C(14)E(6) has a considerable effect on the surface forces between two glass surfaces in a TTAB solution. The barrier force is hardly affected, but the adhesion is reduced remarkably. Also, addition of salt decreases the adhesion, but increases the barrier force. In the presence of salt, addition of C(14)E(6) also increases the thickness of the adsorbed layer. The force barrier height is also shown to be related to literature values for surface pressure data in these systems.  相似文献   

5.
The surface tensions and the phase equilibria of dilute aqueous cationic starch (CS)/surfactant systems were investigated. The degree of substitution of the CS varied from 0.014 to 0.772. The surfactants investigated were sodium dodecyl sulphate (SDS), potassium octanoate (KOct), potassium dodecanoate (KDod) and sodium oleate (NaOl). The concentrations of CS were 0.001, 0.01 and 0.1 w%.Critical association concentrations (cac) occur at surfactant concentrations well below the critical micelle concentrations of the surfactants, except for KOct, KDod and NaOl at the lowest CS concentrations investigated (0.001 w%). The surface tensions of CS/surfactant solutions decrease strongly already below the cac. This is attributed to the formation of surface active associates by ion condensation. Associative phase separation of gels formed by CS and surfactant takes place at extremely low concentrations when the surfactant/polymer charge ratio is somewhat larger than 1. The gel is higly viscous and contains 40–60% water, depending on the concentration of electrolyte, the surfactant hydrocarbon chain length and the nature of the polar head of the surfactant.The concentration at which the phase separation occurs decreases with increasing surfactant chain length and the concentration of simple electrolyte, factors that promote micelle formation. This indicates that the gels are formed by association of CS to surfactant micelles. When surfactant well in excess of charge equivalence is added, the gels dissolve because the CS/surfactant complexes acquire a high charge.  相似文献   

6.
Columns suitable for use in anion chromatography can be prepared by coating a packed reversed-phase HPLC column (C18 silica or polystyrene particles) with a cationic surfactant. The efficiency is improved dramatically by first coating the column with a nonionic surfactant and then subsequently with the cationic surfactant. The thickness of the first coated layer as well as the chemical structure of the surfactant have a major effect on the column performance. Actual separations are included to demonstrate the convenience and practical use of the coated columns. Using this approach, columns with 12,900 theoretical plates for the 15-cm column (or 86,000 plates/m) were produced, giving well shaped peaks with an average asymmetry factor of 1.09. The coated layers were found to be stable, giving retention times with an average relative standard deviation of 1.6% for 12 consecutive runs.  相似文献   

7.
The surface and solution behavior of the mixed dialkyl chain cationic and nonionic surfactant mixture of dihexadecyldimethylammonium bromide, DHDAB, and hexaethylene monododecyl ether, C12E6, has been investigated, using primarily the scattering techniques of small-angle neutron scattering and neutron reflectivity. Within the time scale of the measurements, the adsorption of the pure component C12E6 at the air-solution interface shows no time dependence. In contrast, the adsorption of the DHDAB/C12E6 mixture and pure DHDAB has a pronounced time dependence. The characteristic time for adsorption varies with surfactant concentration, composition, and temperature. It is approximately 2-3 h for the DHDAB/C12E6 mixture, dependent upon concentration and composition, and approximately 50 min for DHDAB. At the air-solution interface, the equilibrium composition of the adsorbed layer shows a marked departure from ideal mixing, which is dependent upon both the solution concentration and the concentration of added electrolyte. In contrast, the composition of the aggregates in the bulk solution that are in equilibrium with the surface is close to ideal mixing, as expected for solution concentrations well in excess of the critical micellar concentration. The structure of the mixed adsorbed layer has been measured and compared with the structure of the equivalent pure surfactant monolayer, and no substantial changes in structure or conformation are observed. The extreme departure from ideal mixing in the adsorption behavior of the DHDAB/C12E6 mixture is discussed in the context of the structure of the adsorbed layer, changes in the underlying solution structures, and the failure of regular solution theory to predict such behavior.  相似文献   

8.
The forces acting between glass and between mica surfaces in the presence of two cationic gemini surfactants, 1,4 diDDAB (1,4-butyl-bis(dimethyldodecylammonium bromide)) and 1,12 diDDAB (1,12-dodecyl-bis(dimethyldodecylammonium bromide)), have been investigated below the critical micelle concentration (cmc) of the surfactants using two different surface force techniques. In both cases, it was found that a recharging of the surfaces occurred at a surfactant concentration of about 0.1 x cmc, and at all surfactant concentrations investigated repulsive double-layer forces dominated the interaction at large separations. At smaller separations, attractive forces, or regions of separation with (close to) constant force, were observed. This was interpreted as being due to desorption and rearrangement in the adsorbed layer induced by the proximity of a second surface. Analysis of the decay length of the repulsive double-layer force showed that the majority of the gemini surfactants were fully dissociated. However, the degree of ion pair formation, between a gemini surfactant and a bromide counterion, increased with increasing surfactant concentration and was larger for the gemini surfactant with a shorter spacer length.  相似文献   

9.
Solubilization kinetics experiments were developed to study the effects of the polyethylene glycol chain length of Triton X surfactants on their interactions with the cholesterol-containing phosphatidylcholine vesicles. An empirical liposome stability ratio was used to describe the vesicle solubilization process. The effectiveness of Triton X surfactants in solubilizing vesicles decreases with increasing polyethylene glycol chain length of surfactants. It was also shown that vesicles containing the intercalated surfactant molecules with the largest number of ethylene glycol units per molecule exhibited the exceedingly retarded solubilization behavior. Independent experiments based on a thermodynamic approach provide supporting evidence for the conclusions obtained from solubilization kinetics experiments.  相似文献   

10.
Critical micelle concentration (cmc) values have been determined for the mixed zwitterionic/anionic surfactant systems of N-dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (ZW3-12)/sodium dodecyl sulfate (SDS), N-dodecyl-N,N-(dimethylammonio)butyrate (DDMAB)/SDS, N-octyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (ZW3-08)/sodium octyl sulfate (SOS), and the zwitterionic/cationic systems of ZW3-12/dodecyltrimethylammonium bromide (DTAB), DDMAB/DTAB. Conductivity studies and nuclear magnetic resonance (NMR) spectroscopy were the methods employed for cmc determinations. The degree of nonideality of the interaction in the micelle (beta(m)), for each system, was determined according to Rubingh's nonideal solution theory. Evidence was found for the existence of strong interactions between zwitterionic and anionic surfactants in each of the zwitterionic/anionic systems. The ZW3-08/SOS and DDMAB/SDS systems behaved synergistically at all mole fractions studied while the ZW3-12/SDS system exhibited synergistic behavior above mole fractions of 0.30. Greater negative deviations from ideal behavior were demonstrated in the DDMAB/SDS system than in the other two zwitterionic/anionic systems. The zwitterionic/cationic systems of ZW3-12/DTAB and ZW3-08/OTAB displayed only slight deviations from ideal behavior, therefore indicating near ideal mixing.  相似文献   

11.
The middle-phase behavior for the systems of cetyltrimethylammonium bromide (CTAB)/poly-ethyleneglycol-9-monododecyl ether (AEO9)/alcohol/oil/brine and CTAB/octylphenolpolyoxyethylene-10-ether (Triton X-100)/alcohol/oil/brine have been studied with ɛ-β fishlike phase diagram method. The interfacial layer composition was determined, and some significant physicochemical parameters are derived from the hydrophilic-lipophilic balance plane equation. The effects of different alcohols, oils, temperature and inorganic salt (NaCl) on the middle-phase behavior of microemulsion formed by composite CTAB/AEO9 systems were also investigated systematically. The effects of different factors on the phase behavior of microemulsions formed by CTAB/AEO9 and CTAB/TX-100 systems were compared. The results suggest that the solubilization of CTAB/AEO9 microemulsion is higher than that of CTAB/TX-100 system under the same conditions.  相似文献   

12.
The electrostatic stabilization of colloidal dispersions is usually considered the domain of polar media only because of the high energetic cost associated with introducing electric charge in nonpolar environments. Nevertheless, some surfactants referred to as "charge control agents" are known to raise the conductivity of liquids with low electric permittivity and to mediate charge stabilization of nonpolar dispersions. Here we study an example of the particularly counterintuitive charging and electrostatic interaction of colloidal particles in a nonpolar solvent caused by nonionic surfactants. PMMA particles in hexane solutions of nonionic sorbitan oleate (Span) surfactants are found to exhibit a field-dependent electrophoretic mobility. Extrapolation to zero field strength yields evidence for large electrostatic surface potentials that decay with increasing surfactant concentration in a fashion reminiscent of electrostatic screening caused by salt in aqueous solutions. The amount of surface charge and screening ions in the nonpolar bulk is further characterized via measurements of the particles' pair interaction energy. The latter is obtained by liquid structure analysis of quasi-2-dimensional equilibrium particle configurations studied with digital video microscopy. In contrast to the behavior reported for systems with ionic surfactants, we observe particle charging and a screened Coulomb type interaction both above and below the surfactant's critical micelle concentration.  相似文献   

13.
We have examined the polymer/surfactant interaction in mixed aqueous solutions of cationic surfactants and anionic polyelectrolytes combining various techniques: tensiometry, potentiometry with surfactant-selective electrodes, and viscosimetry. We have investigated the role of varying polymer charge density, polymer concentration, surfactant chain length, polymer backbone rigidity, and molecular weight on the critical aggregation concentration (Cac) of mixed polymer/surfactant systems. The Cac of these systems, estimated from tensiometry and potentiometry, is found to be in close agreement. Different Cac variations with polymer charge density and surfactant chain length were observed with polymers having persistence lengths either smaller or larger than surfactant micelle size, which might reflect a different type of molecular organization in the polymer/surfactant complexes. The surfactant concentration at which the viscosity starts to decrease sharply is different from the Cac and probably reflects the polymer chain shrinkage due to surfactant binding.  相似文献   

14.
Mixed micellization of dimeric cationic surfactants tetramethylene-1,4-bis(hexadecyldimethylammonium bromide)(16-4-16), hexamethylene-1,6-bis(hexadecyldimethylammonium bromide) (16-6-16) with monomeric cationic surfactants hexadecyltrimethylammonium bromide (CTAB), cetylpyridinium bromide (CPB), cetylpyridinium chloride (CPC), and tetradecyltrimethylammonium bromide (TTAB) have been studied by conductivity and steady-state fluorescence quenching techniques. The behavior of mixed systems, their compositions, and activities of the components have been analyzed in the light of Rubingh's regular solution theory. The results indicate synergism in the binary mixtures. Ideal and experimental critical micelle concentrations (i.e., cmc(*) and cmc) show nonideality, which is confirmed by beta values and activity coefficients. The micelle aggregation numbers (N(agg)), evaluated using steady-state fluorescence quenching at a total concentration of 2 mM for CTAB/16-4-16 or 16-6-16 and 5 mM for TTAB/16-4-16 or 16-6-16 systems, indicate that the contribution of conventional surfactants was always more than that of the geminis. The micropolarity, dielectric constant and binding constants (K(sv)) of mixed systems have also been evaluated from the ratios of respective peak intensities (I(1)/I(3) or I(0)/I(1)).  相似文献   

15.
The phase behavior of aqueous solutions of mixed cetyltrimethylammonium bromide (CTAB) and sodium octyl sulfate (SOS) was examined at different temperatures (20, 30, 40, and 50 degrees C). While stable vesicles were formed in a narrow composition range on the SOS-rich side at 20 degrees C, the range widened remarkably when the temperature was raised to 30 degrees C. Thus, the vesicle region extended to cover almost the entire composition range, CTAB:SOS = 0.5:9.5-5.0:5.0, at the total surfactant concentrations of 50-70 mM on the SOS-rich side. To analyze the temperature dependence of this phase behavior of the mixed surfactant system, DSC and fluorescence polarization measurements were performed on the system. The experimental findings obtained revealed that pseudo-double-tailed CTAB/SOS complex, the major component of the bimolecular membrane formed by the surfactant mixture, undergoes a gel (Lbeta)-liquid crystal (Lalpha) phase transition at about 26 degrees C. This phenomenon was interpreted as showing that the bimolecular membrane has no curvature and is rigid and easy to precipitate at temperatures below the phase transition point, whereas it has a curvature and is loose enough to disperse in the solution as vesicles at temperatures above the phase transition point. Vesicles formed by the anionic/cationic surfactant complex were then stable at temperatures above the phase transition temperature of the complex.  相似文献   

16.
In the present work, the adsorption behavior at the liquid-air interface and micellization characteristics of mixtures of cetyltrimethylammonium bromide (CTAB) and p-(1,1,3,3-tetramethylbutyl) polyoxyethylene (TritonX-100) in aqueous media containing different concentrations of NaBr were investigated by surface tension and potentiometry measurements. From plots of surface tension (gamma) as a function of solution composition and total surfactant concentration, we determined the critical micelle concentration (CMC), minimum surface tension at the CMC (gamma(CMC)), surface excess (Gamma(max)), and mean molecular surface area (A(min)). On the basis of regular solution theory, the compositions of the adsorbed film (Z) and micelles (X(M)) were estimated, and then the interaction parameters in the micelles (beta(M)) and in the adsorbed film phase (beta(sigma)) were calculated. For all mole fraction ratios, the results showed synergistically enhanced ability to form mixed micelles as well as surface tension reduction. Furthermore beta was calculated by considering nonrandom mixing and head group size effects. It was observed that, for both the planar air/aqueous interface and micellar systems, the nonideality decreased as the amount of electrolyte in the aqueous medium was increased. This was attributed to a decrease of the surface charge density caused by increasing the concentration of bromide ions.  相似文献   

17.
A simultaneous determination of cationic and nonionic surfactants has been developed using ion-association titration. Tetrabromophenolphthalein ethyl ester (TBPE) was used as an indicator. Benzalkonium reacted with TBPE to form a blue ion-associate in the organic phase. When tetrakis(4-fluorophenyl)borate was added dropwise to the solution, the color of the organic phase turned to yellow at the equivalence point. In addition, when a large amount of potassium ion was added to a solution including Triton X-100, Triton X-100 could be determined by the same technique as described above because of formation of the K+-Triton X-100 cation. The proposed method is available for the stepwise determination of cationic and nonionic surfactants in mixtures.  相似文献   

18.
In this paper were analyzed the surface properties of surfactants and the miscibility and interactions between components of adsorbed monolayers and micelles formed from mixed systems. The investigated compounds differ in the structure of the polar head and represented cationic (dodecyltrihydroxyethylammonium bromide—DTEAB, dodecyltrimethylammonium bromide DTMAB), anionic (sodium dodecyl sulfate—SDS), and nonionic (dodecyl-β-d-glucoside—DG) surfactant. The experiments were based on the measurements of the surface tension of the aqueous solutions of the investigated compounds and their mixtures (cationic/nonionic—DTEAB/DG, cationic/cationic—DTEAB/DTMAB and cationic/anionic—DTEAB/SDS). The composition of the mixed films and micelles as well as the free energies of mixing values, which are a measure of the molecular interactions, was calculated basing on the equations resulting from the Motomura theory. The obtained results indicate that all the investigated systems mix nonideally both in the monolayers and micelles. The magnitude of the deviations from ideal behavior is strongly dependent on the type of the investigated mixture and increases in the following order: DTEAB/DTMAB < DTEAB/DG  DTEAB/SDS.  相似文献   

19.
The thinning and the critical thickness (of rupture or “black spots” formation) of foam films from aqueous solutions of mixed nonionic surfactants are studied under varied experimental conditions, as a function of film radius (0.05–0.15 mm), surfactant concentration (0.01–1.0 CMC) and ionic strength (0.001–0.1 M NaCl). The experimental values of the drainage coefficient (), determined from the film thickness versus time dependences, were used to calculate the theoretical values of the film critical thickness.

The real velocity of film thinning is a major factor in the process of reaching the state of kinetic instability when approaching the critical thickness (Scheludko's criterion). The classical equation used to describe the film thinning rate, proposed and named by Scheludko (1955) “Reynolds Law”, is applicable for small film radii (r < 0.05 mm). At larger radii the velocity of thinning follows the equation of Manev et al. [E.D. Manev, R. Tsekov, B. Radoev, J. Colloid Interf. Sci. 18 (1997) 769], which takes into account the effect of the film thickness local non-homogeneity.

The studied stabilizing surfactants include n-dodecyl-β-d-maltoside (β-C12G2) and hexaethyleneglycol monododecyl ether (C12E6). Along with confirming the dependences following from the theories of the critical thickness [B. Radoev, A. Scheludko, E.D. Manev, J. Colloid Interf. Sci. 95 (1983) 254] and film thinning [E.D. Manev, R. Tsekov, B. Radoev, J. Colloid Interf. Sci. 18 (1997) 769], the results of the present investigation established also certain deviations for films stabilized with mixed surfactants (β-C12G2 + C12E6). The effectiveness of the empirical equation, employing the drainage coefficient () to describe the film thinning, is emphatically proven here.  相似文献   


20.
The measurements of the advancing contact angle for water, glycerol, diiodomethane and aqueous solutions of Triton X-100 (TX-100), Triton X-165 (TX-165), sodium dodecyl sulfate (SDDS), sodium hexadecyl sulfonate (SHDS), cetyltrimethylammonium bromide (CTAB) and cetylpyridinium bromide (CPyB) on quartz surface were carried out. On the basis of the contact angles values obtained for water, glycerol and diiodomethane the values of the Lifshitz–van der Waals component and electron-acceptor and electron-donor parameters of the acid–base component of the surface free energy of quartz were determined. The determined components and parameters of the quartz surface free energy were used for interpretation of the influence of nonionic, anionic and cationic surfactants on the wettability of the quartz. From obtained results it was appeared that the wettability of quartz by nonionic and anionic surfactants practically does not depend on the surfactants concentration in the range corresponding to their unsaturated monolayer at water–air interface and that there is linear dependence between adhesional and surface tension of aqueous solution of these surfactants. This dependence for TX-100, TX-165, SDDS and SHDS can be expressed by lines which slopes are positive. This slope and components of quartz surface free energy indicate that the interaction between the water molecules and quartz surface might be stronger than those between the quartz and surfactants molecules. So, the surface excess of surfactants concentration at the quartz–water interface is probably negative, and the possibility of surfactants to adsorb at the quartz/water film–water interface is higher than at the quartz–water interface. This conclusion is confirmed by the values of the adhesion work of “pure” surfactants, aqueous solutions of surfactants and water to quartz surface. In the case of the cationic surfactants the relationship between adhesional and surface tension is more complicated than that for nonionic and anionic surfactants and indicates that the relationship between the adsorption of the cationic surfactant at water–air and quartz–water interface depends on the concentration of the surfactants in the bulk phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号