首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the synthesis and characterization of radial heterostructures composed of an antimony telluride (Sb2Te3) core and a germanium telluride (GeTe) shell, as well as an improved synthesis of Sb2Te3 nanowires. The synthesis of the heterostructures employs Au-catalyst-assisted vapor-liquid-solid (VLS) and vapor-solid (VS) mechanisms. Energy-dispersive X-ray spectrometry indicates that Sb and Ge are localized in the Sb2Te3 and GeTe portions, respectively, confirming the alloy-free composition in the core/shell heterostructures. Transmission electron microscopy and diffraction studies show that Sb2Te3 and GeTe regions exhibit rhombohedral crystal structure. Both Sb2Te3 and GeTe grow along the [110] direction with an epitaxial interface between them. Electrical characterization of individual nanowires and nanowire heterostructures demonstrates that these nanostructures exhibit memory-switching behavior.  相似文献   

2.
3.
4.
Large-area highly oriented SiC nanowire arrays have been fabricated by chemical vapor reaction using an ordered nanoporous anodic aluminum oxide (AAO) template and a graphite reaction cell. Their microstructures were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction and high-resolution transmission electron microscopy. The results show that the nanowires are single-crystalline beta-SiC's with diameters of about 30-60 nm and lengths of about 8 microm, which are parallel to each other, uniformly distributed, highly oriented, and in agreement with the nanopore diameter of the applied AAO template. The nanowire axes lie along the [111] direction and possess a high density of planar defects. Some unique optical properties are found in the Raman spectroscopy and photoluminescence emission from oriented SiC nanowire arrays, which are different from previous observations of SiC materials. The growth mechanism of oriented SiC nanowire arrays is also analyzed and discussed.  相似文献   

5.
Zhao J  Liu H  Ehm L  Chen Z  Sinogeikin S  Zhao Y  Gu G 《Inorganic chemistry》2011,50(22):11291-11293
A new type of disordered substitution alloy of Sb and Te at above 15.1 GPa was discovered by performing in situ high-pressure angle-dispersive X-ray diffraction experiments on antimony telluride (Sb(2)Te(3)), a topological insulator and thermoelectric material, at room temperature. In this disordered substitution alloy, Sb(2)Te(3) crystallizes into a monoclinic structure with the space group C2/m, which is different from the corresponding high-pressure phase of the similar isostructural compound Bi(2)Te(3). Above 19.8 GPa, Sb(2)Te(3) adopts a body-centered-cubic structure with the disordered atomic array in the crystal lattice. The in situ high-pressure experiments down to about 13 K show that Sb(2)Te(3) undergoes the same phase-transition sequence with increasing pressure at low temperature, with almost the same phase-transition pressures.  相似文献   

6.
7.
Direct electrodeposition of highly dense Bi/Sb superlattice nanowire arrays   总被引:1,自引:0,他引:1  
Ordered arrays of Bi/Sb superlattice nanowires with diameters of about 50 nm have been produced by pulsed electrodeposition technique into the pores of anodic alumina membrane (AAM). The structure of Bi/Sb superlattice nanowire can be modulated by controlling the electrodeposition conditions.  相似文献   

8.
Sb4Te3 and Sb8Te9 are members of the homology (Sb2Te3)m.(Sb2)n, with structures consisting of Sb2- and Sb2Te3-type slabs stacked along [001]; electrical conductivity and thermopower are reported for several members of this family.  相似文献   

9.
在水热条件下,以乙醇胺为还原剂,实现了亚碲酸根(TeO~(2-)_3)的分步还原,并以新生成的单质Te纳米棒为碲源,原位一步法合成出六方相Sb_2Te_3纳米片.采用X射线粉末衍射仪(XRD)、场发射扫描电子显微镜(FESEM)和透射电子显微镜(TEM)等对产物的物相、形貌及组成进行了表征.结果表明,产物Sb_2Te_3为六方纳米片,厚度约为100~200 nm,直径约为0.6~1.5μm,形貌均一,分散性良好.适宜的合成条件是水/乙醇胺体积比为8∶12,180℃下反应24 h.依据部分实验结果以及单质Te和六方相Sb_2Te_3晶体结构的比较,证明了Sb_2Te_3主要以外延方式在单质Te纳米棒表面生长,且两者的晶面取向为(003)Te//(003)Sb_2Te_3,[110]Te//[110]Sb_2Te_3.  相似文献   

10.
The Sb2Se3-Gd2Te3 system was studied using differential thermal analysis, X-ray powder diffraction, and microstructure examination. This is a quasi-binary system. Sb2Se3-based solubility at 300 K is 10 mol % Gd2Te3. The eutectic contains 20 mol % Gd2Te3 and melts at 760 K. One incongruently melting compound (870 K) of composition GdSbTe1.5Se1.5 was found in the system.  相似文献   

11.
12.
13.
14.
15.
Cao X  Wang N 《The Analyst》2011,136(20):4241-4246
Fe(2)O(3) was generally considered to be biologically and electrochemically inert, and its electrocatalytic functionality has been rarely realized directly in the past. In this work, Fe(2)O(3) nanowire arrays were synthesized and electrochemically characterized. The as prepared Fe(2)O(3) nanomaterial was proved to be an ideal electrode material due to the intrinsic peroxidase-like catalytic activity. The Fe(2)O(3) nanowire array modified glucose sensor exhibited excellent biocatalytic performance towards the oxidation of glucose with a response time of <6 s, a linear range between 0.015-8 mM, and sensitivity of 726.9 μA mM(-1)cm(-1). Additionally, a high sensing selectivity towards glucose oxidation in the presence of ascorbic acid (AA) and dopamine (DA) has also been obtained at their maximum physiological concentrations, which makes the Fe(2)O(3) nanomaterial promising for the development of effective electrochemical sensors for practical applications.  相似文献   

16.
17.
We report a facile template-free method for the large-area growth of freestanding hollow Co3O4 nanowire arrays on a variety of substrates including transparent conducting glass, Si wafer, and copper foil, et al. These nanowires have the interesting combined properties of mesoporosity and quasi-single-crystallinity. With their high surface area and crystallinity, and their direct growth on conductive substrate, these Co3O4 nanowire arrays will have promising applications in lithium-ion batteries, chemical sensing, and field-emission and electrochromic devices. Using the prepared nanowire arrays as electrode, an electrochemical sensor for hydrogen peroxide sensing has been demonstrated.  相似文献   

18.
《Comptes Rendus Chimie》2007,10(6):498-501
Thermal and optical properties of glasses of the Sb2S3–As2S3–Sb2Te3 system. The glass-forming region of Sb2S3–As2S3–Sb2Te3 is very wide. The As2S3 compound supports the formation of prepared glasses and their stability. They have only one glass-transition temperature (Tg), which varies from 167 to 214 °C. It drops when the content of Sb2Te3 increases. This semi-metal compound supports the crystallization of glasses in several stages. Whereas the optical gap (Eg) increases with the content of As2S3 in the Sb2S3–As2S3 and Sb2Te3–As2S3 binary systems, it is practically constant in the ternary one on the cut with 20% of Sb2Te3, and is worth on average 1.04 eV.  相似文献   

19.
We describe a novel route for the conversion of hexagonal Sb(2)Te(3) nanoplates into nanorings driven by growth temperature in a simple solvothermal process. The transmission electron microscopy was employed to investigate systemically the morphology, size, crystallinity, and microstructure of the as-prepared products. The experiments indicated that the growth temperature had a great effect on the morphology of antimony telluride nanostructures. When the experiments were conducted at 200 °C, the hexagonal antimony telluride nanoplates were obtained. However, if the experiments were carried out at higher temperature of 230 °C, the hexagonal antimony telluride nanorings were achieved by dissolution of the inner part with a higher density of defects of the hexagonal nanoplates for the first time. A possible formation mechanism was proposed on the basis of experimental results and analysis. This work may open a new rational route for the synthesis of the hexagonal antimony telluride nanorings, which may have scientific and technological applications in various functional devices.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号