首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantum Monte Carlo (QMC) calculations require the generation of random electronic configurations with respect to a desired probability density, usually the square of the magnitude of the wavefunction. In most cases, the Metropolis algorithm is used to generate a sequence of configurations in a Markov chain. This method has an inherent equilibration phase, during which the configurations are not representative of the desired density and must be discarded. If statistics are gathered before the walkers have equilibrated, contamination by nonequilibrated configurations can greatly reduce the accuracy of the results. Because separate Markov chains must be equilibrated for the walkers on each processor, the use of a long equilibration phase has a profoundly detrimental effect on the efficiency of large parallel calculations. The stratified atomic walker initialization (STRAW) shortens the equilibration phase of QMC calculations by generating statistically independent electronic configurations in regions of high probability density. This ensures the accuracy of calculations by avoiding contamination by nonequilibrated configurations. Shortening the length of the equilibration phase also results in significant improvements in the efficiency of parallel calculations, which reduces the total computational run time. For example, using STRAW rather than a standard initialization method in 512 processor calculations reduces the amount of time needed to calculate the energy expectation value of a trial function for a molecule of the energetic material RDX to within 0.01 au by 33%.  相似文献   

2.
We have tested and compared several (pseudo) random number generators (RNGs) applied to a practical application, ground state energy calculations of molecules using variational and diffusion Monte Carlo metheds. A new multiple recursive generator with 8th‐order recursion (MRG8) and the Mersenne twister generator (MT19937) are tested and compared with the RANLUX generator with five luxury levels (RANLUX‐[0–4]). Both MRG8 and MT19937 are proven to give the same total energy as that evaluated with RANLUX‐4 (highest luxury level) within the statistical error bars with less computational cost to generate the sequence. We also tested the notorious implementation of linear congruential generator (LCG), RANDU, for comparison. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

3.
Massively parallel architectures offer the potential to significantly accelerate an application relative to their serial counterparts. However, not all applications exhibit an adequate level of data and/or task parallelism to exploit such platforms. Furthermore, the power consumption associated with these forms of computation renders “scaling out” for exascale levels of performance incompatible with modern sustainable energy policies. In this work, we investigate the potential for field-programmable gate arrays (FPGAs) to feature in future exascale platforms, and their capacity to improve performance per unit power measurements for the purposes of scientific computing. We have focused our efforts on variational Monte Carlo, and report on the benefits of coprocessing with a FPGA relative to a purely multicore system.  相似文献   

4.
A new algorithm is presented for the sparse representation and evaluation of Slater determinants in the quantum Monte Carlo (QMC) method. The approach, combined with the use of localized orbitals in a Slater-type orbital basis set, significantly extends the size molecule that can be treated with the QMC method. Application of the algorithm to systems containing up to 390 electrons confirms that the cost of evaluating the Slater determinant scales linearly with system size.  相似文献   

5.
We assess the performance of variational (VMC) and diffusion (DMC) quantum Monte Carlo methods for calculating the radical stabilization energies of a set of 43 carbon-centered radical species. Even using simple single-determinant trial wavefunctions, both methods perform exceptionally well, with mean absolute deviations from reference values well under the chemical accuracy standard of 1 kcal/mol. In addition, the use of DMC results in a highly concentrated spread of errors, with all 43 results within chemical accuracy at the 95% confidence level. These results indicate that DMC is an extremely reliable method for calculating radical stabilization energies and could be used as a benchmark method for larger systems in future.  相似文献   

6.
A novel algorithm is proposed for the fixed-node quantum Monte Carlo (FNQMC) method.In contrast to previous procedures,its "guiding function" is not optimized prior to diffusion quantum Monte Carlo (DMC) computation but synchronistically in the diffusion process The new algorithm can not only save CPU time,but also make both of the optimization and diffusion carried out according to the same sampling fashion,reaching the goal to improve each other This new optimizing procedure converges super-linearly,and thus can accelerate the particle diffusion During the diffusion process,the node of the "guiding function" changes incessantly,which is conducible to reducing the "fixed-node error" The new algorithm has been used to calculate the total energies of states X3B1 and a1A1 of CH2 as well as π-X2B1 and λ-2A1 of NH2 The singlet-triplet energy splitting (λEsT) in CH2 and π energy splitting in NH2 obtained with this present method are (45 542±1.840) and (141.644±1.589) kJ/mol,respectively The calculated  相似文献   

7.
对变分量子Monte Carto方法提出了一种种算法:将传统的Hartree-Foek方法与量子Monte Carlo方法有机结合在一起;导出了“局部能”的解析式;使用了一种新的相关函数和随机数发生器。我们用这个新算法计算了H2、LiH、Li2、H2O、F2分子的基态和CH2分子的^3B1、^1A1态的能量。计算结果表明,这个新算法在精度和统计误差两个方面比一般VMC过程都要好得多。  相似文献   

8.
提出了用于电子激发态的剩余函数变分量子MonteCarlo(SFVMC)方法,已经证明:若激发态的初始波函数与基态的初始波函数属于对称性不同的不可约表示时,该激发态的SFVMC方法与基态的SFVMC方法完全相同;若激发态的初始波函数与基态的初始波函数有相同的对称性时,只要对激发态的初始波函数作正交性修正,则其态的SFVMC方法亦可推到该激发态的情况。文章导出了这第二类激发态的SFVMC方法的详细计  相似文献   

9.
We present a computational approach, using quantum Monte Carlo, that provides some insight into the effect of electron correlation on chemical bonding between individual pairs of atoms. Our approach rests upon a recently suggested relation between the bond order and charge fluctuations with respect to atomic domains. Within the present implementation we have taken a compromise between conceptual rigour and computational simplicity. In a first step atomic domains were obtained from Hartree-Fock (HF) densities, using Bader’s definition of atoms in molecules. These domains were used in a second step in quantum Monte Carlo calculations to determine bond orders for pairs of atoms. Correlation effects have been studied by comparison of HF bond orders with those obtained from pure diffusion quantum Monte Carlo calculations. We illustrate this concept for C–O and C–S bonds in different molecular environments. Our results suggest an approximate linear relation between bond order and bond length for these kinds of bonds.  相似文献   

10.
Nested Markov chain Monte Carlo is a rigorous way to enhance sampling of a given energy landscape using an auxiliary, approximate potential energy surface. Its practical efficiency mainly depends on how cheap and how different are the auxiliary potential with respect to the reference system. In this article, a combined efficiency index is proposed and assessed for two important families of energy surfaces. As illustrated for water clusters, many‐body polarizable potentials can be approximated by simplifying the polarization contribution and keeping only the two‐body terms. In small systems, neglecting polarization entirely is also acceptable. When the reference potential energy is obtained from diagonalization of a quantum mechanical Hamiltonian, a first‐order perturbation scheme can be used to estimate the energy difference occuring on a Monte Carlo move. Our results indicate that this perturbation approximation performs well provided that the number of steps between successive diagonalization is adjusted beforehand. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem 110:2342–2346, 2010  相似文献   

11.
为量子Monte Carlo方法提出一条新途径-剩余函数法,引入了Schroedinger方程剩余函数的概念,利用剩余函数将一种新的有明显物理意义的试探函数应用到量子Monte Carlo过程中,这种试探函数是通过一种迭进式的方式确定的,它不需要在Monte Carlo过程中优化参数。文中我们将给出这种试探函数的具体形式,证明由这种试探函数求出的能量期望值收敛于体系真实的能量值;文中还给出这种试探  相似文献   

12.
提出了一个优化量子MonteCarlo波函数的新方法,与前人的方法相比,它不使用变分原理而是极小化Schrodinger方程的剩余量;不按Ψ2取样而是按Ψ2(EL-E)2取样;不用差分而是用分析导数;不使用传统的速降法而是使用一个步长自动调节的下降法,它具有拟牛顿性质,因而是超线性收敛的.由于这四项新技术的使用,使得波函数的优化快速、准确,收敛速度比前人提出的方法快3~5倍.  相似文献   

13.
提出了自优化扩散量子MonteCarlo差值法,这是一个集优化、扩散和相关取样三项技术于一身的MonteCarlo新算法.这个算法能够在扩散过程中直接计算两个体系之间的能量差,且使计算结果的统计误差达到10-5hartree数量级,获得相关能达80%以上.应用该方法研究分子势能面,使用"刚性移动"模型,利用Jacobi变换使分子两个几何构型的能量计算具有很好的正相关性,因而能得到准确的能量差值和分子势能面.另外,我们还首创了"平衡后留样"技术,可节省50%以上的计算量.该算法还可应用于分子光谱、化学反应能量变化值等领域的研究.  相似文献   

14.
We report calculations of the ground state energy and binding curve of the chromium dimer using the variational and diffusion quantum Monte Carlo (VMC and DMC) methods. We examined various single‐determinant and multideterminant wavefunctions multiplied by a Jastrow factor as a trial/guiding wavefunction for VMC/DMC. The molecular orbitals in the single determinants were calculated using restricted or unrestricted Hartree–Fock or density functional theory (DFT) calculations where five commonly used local (SVWN5), semilocal (PW91 and BLYP), and hybrid (B1LYP and B3LYP) functionals were examined. The multideterminant expansions were obtained from the generalized valence bond and (truncated) unrestricted configuration interaction with single and double excitations (UCISD) methods. We also examined a UCISD wavefunction in which UCISD expansions were added to the UB3LYP single‐determinant reference, and their coefficients were optimized at the VMC level. In addition to the wavefunction dependence, the effects of pseudopotentials and backflow transformation were also investigated. The UB3LYP single‐determinant and multideterminant wavefunctions were found to give the variationally best DMC energies within the framework of single‐determinant and multideterminants, respectively, though both the DMC energies were higher than twice the DMC atomic energy. Some of the VMC binding curves show a flat or quite shallow well bottom, which gets recovered deeper by DMC. All the DMC binding curves have a minimum indicating a bound state, but the unrestricted ones overestimate the equilibrium bond length. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

15.
16.
17.
Monte Carlo simulations can be used to determine the precision of an analytical method if the standard deviations of the component unit operations are estimated accurately. Alternative methods for estimating the standard deviation have been compared by evaluating the success of Monte Carlo simulations to predict the precision of a second-order rate constant determined by spectrophotometry and of an equivalent weight and acid dissociation constant determined by potentiometry. Monte Carlo simulation has also been used with simplex optimization to predict a data acquisition schedule which gives high precision in the equivalent weight determination. By comparison with a naive design, a 22-fold improvement was predicted. A 15-fold improvement was observed experimentally.  相似文献   

18.
Accurate calculation of hydrogen abstraction reaction barriers is a challenging problem, often requiring high level quantum chemistry methods that scale poorly with system size. Quantum Monte Carlo (QMC) methods provide an alternative approach that exhibit much better scaling, but these methods are still computationally expensive. We describe approaches that can significantly reduce the cost of QMC calculations of barrier heights, using the hydrogen abstraction of methanol by a hydrogen atom as an illustrative example. By analysing the combined influence of trial wavefunctions and pseudopotential quadrature settings on the barrier heights, variance, and time‐step errors, we devise a simple protocol that minimizes the cost of the QMC calculations while retaining accuracy comparable to large‐basis coupled cluster theory. We demonstrate that this protocol is transferable to other hydrogen abstraction reactions.  相似文献   

19.
Gedeon  Ondrej  Hulinsky  Vaclav 《Mikrochimica acta》1994,114(1):305-311
A Monte Carlo correction program for quantitative microanalysis on PC computer is introduced in this paper. The elastic scattering is described by the screened Rutherford cross section. Instead of computing the energy loss according to the actual path between two scatterings we have defined the Bethe inelastic cross section determined by the Bethe-slowing-down approximation. It is assumed that it causes no angular departure of the scattered electron. In the second model we took into account the angular dependence of inelastic scattering assuming that the primary electron interacts with quasi-free atom electrons. On the basis of these two models analytical Monte Carlo programmes were developed and experimentally tested on some oxide glass. Our results are fully comparable to those obtained by ten world microprobe laboratories using classical ZAF correction or Bence-Albee methods. We have found that introducing angular part of the inelastic cross section analytical results did not significantly change. All of our results were carried out for bulk specimens but extending it to layers is under the development.  相似文献   

20.
The Monte Carlo simulated annealing method is adapted to optimize correlated Gaussian‐type functions in nonrelativistic molecular environments. Starting from an atom‐centered atomic Gaussian basis set, the uncontracted functions are reoptimized in the molecular environments corresponding to the H2O, CN?, N2, CO, BF, NO+, CO2, and CS systems. These new molecular adapted basis sets are used to calculate total energies, harmonic vibrational frequencies, and equilibrium geometries at a correlated level of theory. The present methodology is a simple and effective way to improve molecular correlated wave functions, without the need to enlarge the molecular basis set. Additionally, this methodology can be used to generate hierarchical sequences of molecular basis sets with increasing size, which are relevant to establish complete basis set limits. © 2014 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号