首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of the introduced fluorine atoms to diketonato backbone exerted on the crystal packing was studied on cobalt(II) bis(4,4,4-trifluoro-1-phenylbutane-1,3-dionato-κ 2 O,O′) compounds with pyridine (1), 2,2′-bipyridine (2) and 1,10-phenanthroline (4), and cobalt(II) bis(benzoylacetonato-κ 2 O,O′) compound with 2,2′-bipyridine (3). The solid-state structures of 14 were determined by single crystal X-ray analysis. The coordination of Co(II) is octahedral in all four compounds. The differences in crystal packing of 1 with regard to the known complexes with non-fluorinated analogue and 4,4,4-trifluoro-1-(4-fluorophenyl)butane-1,3-dionate were observed. Unit cell parameters of 2·½C7H8 and 3·½C7H8 slightly differ, but they have similar crystal packing dominated by the ππ interactions. Strong ππ interactions and weak C–H···π(arene) and C–F···π(arene) interactions are present in 24, while no significant intermolecular interactions are present in 1.  相似文献   

2.
Tris[2-(N-ethyl)benzimidazylmethyl]amine (Etntb) and two of its complexes, [Zn(Etntb)(cinnamate)]NO3·2DMF (1) and [Ni(Etntb)(cinnamate)·(H2O)]NO3 (2) have been synthesized and characterized by physico-chemical and spectroscopic methods. Single-crystal X-ray diffraction revealed that the complexes have different structures. In complex 1, the coordination sphere around Zn(II) is distorted trigonal bipyramidal, whereas the coordination sphere around Ni(II) is distorted octahedral in complex 2. The DNA-binding properties of the free ligand and its complexes have been investigated by electronic absorption, fluorescence, and viscosity measurements. The results suggest that the ligand and both complexes bind to DNA via an intercalative mode, and their binding affinity for DNA follows the order 1 > 2> ligand.  相似文献   

3.
The complexes [CuL2Cl2]n (1), [CoL2Cl2(H2O)2]·L (2) and [MnL2Cl2(H2O)2]·L (3) (L = 3-chloro-6-(1H-1,2,4-triazol-1-yl) pyridazine) were synthesized and characterized by physicochemical and spectroscopic methods. X-ray crystallographic analysis reveals that the Cu(II) center of complex 1 is located in a slightly distorted tetragonal pyramidal environment and bridged by chlorine atoms to generate infinite 1D chains, which are further connected into 2D supramolecular structures by C–H…Cl hydrogen bonds. The Co(II) and Mn(II) atoms in complexes 2 and 3 both have a distorted octahedral coordination sphere, and the crystal lattices include hydrogen bonds and ππ stacking interactions to yield 3D supramolecular frameworks. The antioxidant activities (influence on O2 ?? and ?OH) and antibacterial activities of the ligand L and its three complexes were also investigated.  相似文献   

4.
Two metal–organic coordination polymers, {Co(bbbi)0.5(bm)(Hbtc)} n (1) and {Ag2(bbbi)2(ntp)(H2O)·4H2O} n (2), [bbbi = 1,1-(1,4-butanediyl)bis-1H-benzimidazole, bm = benzimidazole, H3btc = 1,2,4-trimellitic acid, and H2ntp = 2-nitroterephthalic acid], have been hydrothermally synthesized and characterized by physico-chemical and spectroscopic methods and single-crystal diffraction. 1 Features a 1D ladder-like chain and is further connected by O–H···O hydrogen bonding interactions to yield a 3D supramolecular architecture. 2 Possesses a 1D infinite zigzag chain connected by bbbi ligands in bis-monodentate mode, which is further extended into a 3D complicated supramolecular network by face-to-face ππ stacking interactions and O–H···O hydrogen bonds. Moreover, both compounds exhibit catalytic properties on degradation of methyl orange in Fenton-like process.  相似文献   

5.
Three new silver coordination compounds with empirical formula [Ag2(L1)2·(ntp)·(H2O)3.25]n (1), [Ag1.5(L1)1.5·(H0.5bdc)·(H2O)4]n (2) and [Ag(L2)(Hmip)]n (3) (L1 = 1,4-bis(imidazol-1-ylmethyl)benzene, L2 = 1,1′-(1,4-butanediyl)bis-1H-benzimidazole, H2ntp = 2-nitroterephthalic acid, H2bdc = 1,3-benzenedicarboxylic acid, H2mip = 5-methylisophthalic acid) were synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction and physico-chemical spectroscopic methods. The silver centers display different environments with a linear geometry in 1 and 2 and distorted T-shaped geometry in 3. In 1–3, the bidentate N-donor ligands (L1 and L2) bridge neighboring silver centers to form 1D infinite chain structures. Complexes 2 and 3 are extended into 2D layers, and 1 is packed into a 3D 3,4,4,6-connected supermolecular network via classical O–H···O hydrogen bonds, while 3 is further extended into 3D framework through π–π interactions. The luminescence properties of complexes 1, 2 and 3 were investigated in the solid state. These coordination polymers possess a remarkable activity for degradation of methyl orange by persulfate in a Fenton-like process.  相似文献   

6.
A prolonged storage of a solution of RhCl3·nH2O in N,N-dimethylformamide (DMF) at room temperature is attended by the consecutive formation of two precipitates, which mainly contain the [(CH3)2NH2][RhCl5(DMF)] complex (I) and the complex [RhCl3(DMF)3] (II) liberates. The addition of PPh4Cl to an aqueous solution of complex I brings about the precipitation of [PPh4][RhCl4(H2O)2] (III). Complex II (a mixture of mer-and fac-isomers) can be obtained also by treatment of [RhCl3(CH3CN)3] with DMF. In the course of the latter reaction, the formation of intermediate complex [RhCl3(CH3CN)2(DMF)] (IV) is observed. Complexes I–IV are characterized by elemental analysis; complexes I, II, and IV are characterized by the IR and 1H and 13C NMR spectra. The structures of III and IV are determined by X-ray diffraction analysis.  相似文献   

7.
Host–guest complexes of Docetaxel 1, an anti-cancer drug have been isolated and crystal structures are described. Docetaxel crystallized in the 1:1 molar ratio with n-butanol, dimethylformamide (DMF) and acetonitrile (ACN) during crystallization from the respective solvents. In all the three complexes (1 · n-butanol, 1 · DMF and 1 · ACN), docetaxel formed a host framework through hydrogen bonds and the guest solvent molecules occupied the channels. The host is hydrogen bonded to the guest molecules through hydroxyl moieties. Interestingly, 1 · n-butanol, 1 · DMF and a literature 1 · CH3OH · H2O (1:1:1) host–guest complexes are isomorphs. Further, 1 · ACN complex unit cell parameters are similar (same space group) to the marketed docetaxel trihydrate polymorph (form A).  相似文献   

8.
Two new Mn(II) complexes [Mn(Hmbhce)2(o-phen)] (1) and [Mn(Hmbhce)2(bpy)] (2) based on N??-(2-methoxybenzoyl)hydrazine carbodithioic acid ethyl ester (H2mbhce) have been synthesized by reacting Mn(OAc)2·4H2O with H2mbhce in the presence of o-phen/bpy. The complexes have been characterized by elemental analyses, magnetic susceptibility measurement, IR, UV?CVis and single crystal X-ray data. Both complexes [Mn(Hmbhce)2(o-phen)] and [Mn(Hmbhce)2(bpy)] crystallize in monoclinic system with space group P 21/c and P 21/n, respectively. The single crystal X-ray structures of 1 and 2 show that the Mn(II) center is bonded with two (Hmbhce)? through carbonyl oxygen and deprotonated hydrazinic nitrogen, plus two nitrogen atoms from one o-phen/bpy co-ligand. The crystal structures of complexes 1 and 2 are stabilized by weak intramolecular N?CH···O hydrogen bonding and C?CH···?? interactions giving supramolecular architectures.  相似文献   

9.
The reactions of silver nitrate with 2-sulfoisophthalic acid (H3stp) in the presence of N-donor ligands produced three coordination polymers; [Ag3(stp)(pyz)0.5]n (1), {[Ag4(dpp)4]·2(Hstp)·9H2O}n (2), and {[Ag(bpe)]2[Ag2(bpe)2]2·2(stp)·19H2O}n (3) [pyz = pyrazine, bpp = 1,2-bis(4-pyridyl)propane, bpe = 1,2-di(4-pyridyl)-ethylene]. The complexes have been characterized by single-crystal X-ray diffraction, physico-chemical, and spectroscopic methods. Single-crystal X-ray diffraction reveals that complex 1 is a 2D silver carboxylate-sulfonate layered structure, in which the 2D layers are further linked by the N-donor atoms of pyz ligands into a 3D supramolecular structure. Complex 2 is an infinite 1D chain arrangement with the [Ag2(dpp)2]2+ unit in which weak Ag···Ag or Ag···O interactions extend the chains into 2D structures. Complex 3 has a 3D supramolecular structure constructed by hydrogen bonding, π–π stacking, and Ag···O interactions to link the ligands, metal atoms, and water molecules together. The luminescence properties of the complexes were investigated.  相似文献   

10.
A new asymmetric N,N′-bis(substituent)oxamide ligand, N-phenolato-N′-(3-dimethylaminopropyl)oxamide (H3pdmapo), and two of its binuclear Cu(II) complexes with different terminal ligands, namely [Cu2(pdmapo)(phen)(H2O)](ClO4) (1) and [Cu2(pdmapo)(bpy)(CH3OH)](ClO4) (2), where phen = 1,10-phenanthroline and bpy = 2,2′-bipyridine, have been synthesized and characterized. The crystal structures of both complexes have been determined by single-crystal X-ray diffraction. Both structures contain binuclear Cu(II) cationic complexes with pdmapo3? ligands. The asymmetric pdmapo3? ligands bridge two Cu(II) atoms in the cis conformation and the Cu···Cu separations through the oxamide bridge are 5.2046(18) and 5.207(2) Å for complexes 1 and 2, respectively. The coordination environments of the two Cu(II) atoms in each binuclear complex are different. The copper occupying the inner site of the pdmapo3? ligand is four-coordinated in a CuN3O distorted square-planar environment, while the other is five-coordinated in a square pyramid geometry. In complex 1, O–H···O and C–H···O hydrogen bonds link the complex into a one-dimensional chain. In complex 2, O–H···O hydrogen bonds link the molecules to form a dimer, together with two types of strong ππ interactions, giving a two-dimensional network structure. The cytotoxicities and DNA-binding properties of H3pdmapo and the two complexes were studied. The experimental evidence suggests that the ligand binds to DNA via a groove binding mode, while the binuclear complexes bind intercalatively to DNA.  相似文献   

11.
Using a hydrothermal synthesis method, two Ag(I) coordination polymers, {[Ag2(bbbm)2]·(Hbtc)} n (1) and {[Ag2(mbim)2(Hsip)]·H2O} n (2) (bbbm = N,N’-(1,4-butanediyl)bis-(benzimidazole), mbim = N,N′-(1,1-methyl)-bis-(imidazole), H3btc = 1,3,5-benzenetricarboxylic acid, H3sip = 5-sulfoisophthalic acid) were synthesized and characterized by physicochemical and spectroscopic methods and single crystal diffraction. The complex 1 features a 2D supramolecular network formed by left- and right-handed cationic [Ag(bbbm)] n helical chains and Hbtc ligands with the link of Ag···O interactions, displaying an unusual trinodal (3,3,4)-connected 3,3,4L12 topology net. The complex 2 has a left-handed and a symmetric right-handed double-stranded [Ag2(mbim)2(Hsip)] n helical chains. The adjacent [Ag2(mbim)2(Hsip)] n helical chains are further linked by Hsip ligands through the combination of weak Ag···O coordinative interactions and ligand-supported Ag···Ag interactions to generate a 3D supramolecular framework, exhibiting a new type of topology of a trinodal (4,5,5)-connected net. The solid-state fluorescence properties of the compounds 1 and 2 were investigated.  相似文献   

12.
Two Ni(II) coordination polymers, [Ni(dmbbbi)(pic)2·3H2O] n (1) and [Ni(dmbbbi)1.5(pdc)·2H2O] n (2) (dmbbbi = 1,1′-(1,4-butanediyl)bis(5,6-dimethylbenzimidazole), Hpic = 2-picolinic acid, H2pdc = pyridine-2,6-dicarboxylic acid), have been hydrothermally synthesized by self-assembly of nickel chloride with a flexible bis(5,6-dimethylbenzimidazole) ligand and two different pyridine carboxylic acids. The compounds were characterized by physico-chemical and spectroscopic methods and by single-crystal diffraction. Compound 1 possesses 1D ribbon-like chains connected by dmbbbi ligands in bis-bridging mode, which are further extended into a 2D supramolecular network through O–H···O hydrogen bonding interactions between pic anions and lattice water molecules, giving a novel trinodal (3,3,4)-connected topology with the point symbol of (4.6.8)2(6.84.10). Compound 2 shows a 2D undulant {63} hexagonal (hcb) network. The structures of the two complexes are further stabilized by intramolecular π···π stacking interactions between the imidazole and N-containing nickel chelate rings. In addition, the fluorescence properties of 1 and 2 have been investigated in the solid state.  相似文献   

13.
Three inorganic–organic hybrid complexes, [Cu2(H2biim)2(OH)2]2(SiW12O40)·2H2O (1), [Cu2(H2biim)2]2(SiW12O40)·2H2O (2) and [Ag2(H2biim)2]2(SiW12O40)·2H2O (3) (H2biim = 2, 2′-biimidazole), have been synthesized under hydrothermal conditions, and characterized by elemental analysis, IR, PXRD, TG and single-crystal X-ray diffraction. The crystallographic analysis reveals that in compounds 13, the Keggin polyanions [α-SiW12O40]4? act as inorganic building blocks, which are linked with the dinuclear metal–organic units via Cu–O bonds in compound 1, or through supramolecular interactions in compounds 2 and 3. Compound 1 shows a 3D supramolecular structure constructed by net-like layers. Compounds 2 and 3 display 2D layer structures which were composed of wave-like chains. In addition, these compounds show electrochemical activities, and photoluminescence properties are measured in the solid state.  相似文献   

14.
Four new complexes having general formula [CoL2(acr)2] (L: 1H-pyrazole (Hpz) (1); 3-methyl-1H-pyrazole (3-Me-Hpz) (2); 4-methyl-1H-pyrazole (4-Me-Hpz) (3); 3,5-dimethyl-1H-pyrazole (Hdmpz) (4); acr: acrylato ion) were synthesised and characterised. The infrared and UV–vis spectral data indicate that these pyrazole derivatives act as unidentate while acrylato ions act as bidentate chelate ligands generating Co(II) complexes with octahedral stereochemistry. TG experiments revealed the nature of complex species as anhydrous and confirmed those compositions. The biological assays revealed a good activity against Bacillus subtilis for all complexes.  相似文献   

15.
Some new Schiff bases, (Z)-4-amino-3-((E)-(R-methoxybenzylidene)hydrazono)-6-methyl-3,4-dihydro-1,2,4-triazin-5(2H)-one (R?=?2 (L2), R?=?3 (L3) and R?=?4 (L4)), were synthesized by the condensation reactions of 4-amino-3-hydrazinyl-6-methyl-1,2,4-triazin-5(4H)-one (L1) and corresponding methoxybenzaldehyde in a molar ratio 1:1.5 in high yields. The reaction of L2 and L4 with an excess amount of the corresponding aldehydes gave the unsymmetrical bis-Schiff bases (E)-3-((E)-(R-methoxybenzylidene)hydrazono)-4-((E)-R-methoxybenzylideneamino)-6-methyl-3,4-dihydro-1,2,4-triazin-5(2H)-one (R?=?2 (L22) and R?=?4 (L44)), respectively. Furthermore, the reaction of L2?CL4 with silver(I) nitrate in a molar ratio 2:1 led to the silver(I)-complexes with the general formula [Ag(Lx)2]NO3 (Lx?=?L2 (2), L3 (3) and L4 (4)). All synthesized Schiff base compounds and complexes were characterized by a combination of IR-, 1H-NMR spectroscopy, mass spectrometry and elemental analyses. In addition, the structures of L2, L4·CH3CN, L22·CH3OH and L44·CH3OH and complexes 2 and 4 were determined by X-ray diffraction studies.  相似文献   

16.
Two cobalt(II) metal–organic frameworks constructed from 1,2,4,5-benzenetetracarboxylic acid and flexible bis(5,6-dimethylbenzimidazole) ligands, namely {[Co1.5(Hbtec)(L1)1.5(H2O)2]·(H2O)} n and {[Co(H2btec)(L2)]·(L2)0.5(H2O)2} n [L1 = 1,4-bis(5,6-dimethylbenzimidazole-1-ylmethyl)benzene, H4btec = 1,2,4,5-benzenetetracarboxylic acid, L2 = 1,4-bis(5,6-dimethylbenzimidazole)butane], have been hydrothermally synthesized and characterized by physicochemical and spectroscopic methods and by single-crystal X-ray diffraction. The cobalt atoms present different coordination environments, with trigonal-bipyramidal and octahedral geometries in 1, and a tetrahedral geometry in 2. Complex 1 has a 2D (6,3) wave like layer structure, which is further linked by hydrogen bonding to generate a 3D supramolecular architecture. It is a trinodal (4,4,4)-connected topology with a point symbol of {42·6·83}2{42·62·82}{43·63}2. Complex 2 is a 2D (6,3) honeycomb net, further linked into a 3D supramolecular network via two modes of ππ stacking interactions. The degradation of methyl orange in a Fenton-like process using complexes 1 and 2 as catalysts has been investigated.  相似文献   

17.
Two new polymeric networks, [Co(pbbm)(nip)] · H2O (1) and [Ni(pbbm)(nip) · (H2O)] (2) (pbbm = 1,1-(1,3-propanediyl)bis-1H-benzimidazole, H2nip = 5-nitroisophthalic acid) have been hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction. Complex 1 is an interesting one-dimensional (1D) tube-like chain utilizing [Co2(pbbm)2] metallocycle as subunit. Complex 2 is also an interesting 1D tube-like chain based on [Ni2(pbbm)2] loop subunit. In the title complexes, the ??-?? stacking and H-bonding interactions extend the 1D tube into 3D supramolecular framework, respectively. The structural differences between the title complexes indicate the importance of metal ions for the creation of molecular architectures. Furthermore, the luminescent properties of 1 and 2 were investigated.  相似文献   

18.
Three new cobalt complexes, {[Co5(tci)2(bimb)33-O)2(H2O)2]·3DMF·4H2O} n (1), {[Co3(tci)2(bib)]·2DMF·2H2O} n (2) and {[Co(Htci)(bpea)0.5]·H2O} n (3) (H3tci = tris(2-carboxyethyl)isocyanurate, bimb = 4,4′-bis(imidazol-1-yl)biphenyl, bib = 1,4-bis(imidazol-1-yl)benzene, bpea = 1,2-bis(4-pyridyl)ethane, DMF = N,N′-dimethylformamide), have been successfully synthesized through the assembly of Co(II) ions, H3tci and different N-donor ligands, respectively. All complexes were structurally characterized by single crystal X-ray diffraction, elemental analyses, IR spectra, thermogravimetric (TG) analyses and X-ray powder diffraction (XRPD). Complex 1 exhibits a 3D three-fold parallel interpenetrated 3D → 3D structure with (65·8) CdSO4 topology. Complex 2 is built from [Co32-Ocarboxyl)2(CO2)4] clusters and linear bib ligands, displaying a two-fold parallel interpenetrated (3,8)-connected (43)2(46·618·84) topology, while complex 3 is a 3D pillar-layered structure involving an infinite -Co-(µ2-Ocarboxyl)(CO2)-Co-chain. The diverse structures of the three complexes indicate that the skeletons of different N-donor ligands play an important role in the assembly of such different frameworks. In addition, magnetic investigation indicates that besides spin-orbit coupling of Co(II) ions, there exist antiferromagnetic exchange interactions in Co5 and Co3 clusters of 1 and 2, respectively.  相似文献   

19.
Transition metal complexes of 2-(1-(carboxymethyl)-2-methyl-1H-benzimidazol-3-ium-3-yl)acetate (HL), namely [Co(L)2(H2O)4] · 6H2O (I) and [Cu(L)2(H2O)2] · 4H2O (II), have been synthesized by a hydrothermal procedure and characterized by X-ray crystallography, CIF files CCDC nos. 1007524 (I), 1007525 (II). Both I and II are mononuclear molecules. In I, the Co2+ ion is in octahedral coordiantion environment and surrounded by four O atoms from water molecules and two carboxylate O atoms of two deprotonated ligand (L?) occupied six culmination. While in II, the Cu2+ ion is located in a square-planar geometry, bounded to two aqua O atoms and two carboxylate O atoms from L?.  相似文献   

20.
Two new cobalt(III) complexes of the hexadentate ligand [1,4-bis[o-(pyridine-2-carboxamidophenyl)]-1,4-dithiobutane] (H2bpctb) with N4S2 donor set atoms have been synthesized. A reaction of Co(CH3COO)2·4H2O with (H2bpctb) leads to the formation of [CoIII(bpctb)]PF6 (1) having a CoN2(pyridine)N′2(amide)S2(thioether) coordination by symmetric bpctb2? ligand. A similar reaction under slightly different conditions, however, gives [CoIII(L a )(L b )] (2), resulting from a C–S bond cleavage reaction triggered by an acetate ion as a base, having CoN2(pyridine)N′2(amide)S(thioether)S′(thiolate) coordination. These two Co(III) complexes have been characterized by elemental analyses and spectroscopic methods, and the crystal and molecular structures of [CoIII(bpctb)]PF6 (1) in the form of the solvate (1·MeOH·H2O) and of [CoIII(L a )(L b )] (2) have been determined by X-ray crystallography. The Co atoms of both complexes exhibit distorted octahedral geometry. The electrochemical investigation of [Co(bpctb)]PF6·MeOH·H2O (1·MeOH·H2O) and [CoIII(L a )(L b )] (2) by cyclic voltammetry reveals a reversible CoIII–CoII redox process at E 1/2 = ?0.32 V (ΔE p = 80 mV); for 1, and E 1/2 = ?0. 87 V (ΔE p = 70 mV) for 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号