首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An analytical investigation of the onset of convection, induced by internal heating, in a composite porous medium consisting of two horizontal layers has been made. The two-layer model that we adopted makes it possible to investigate and compare the effects of both weak and strong heterogeneity. Both cases of constant heat flux and constant wall temperature boundary conditions have been treated. In general, we established that anything that aids convection in the upper portion of the layer is destabilizing. In agreement with this rule, we found that conductivity increasing upward leads to a more stable situation, permeability increasing upward leads to a less stable situation, and source strength increasing upward generally leads to a less stable situation.  相似文献   

2.
We present an analytical investigation of the effect of vertical throughflow on the onset of convection, induced by internal heating, in a composite porous medium consisting of two horizontal layers. If convection is induced by internal heating, the bulk of the convection occurs in the upper half of the layer where the buoyancy force is destabilizing. For the case of heterogeneous porous medium, if the permeability increases in the upward direction, or if the thermal conductivity decreases in the upward direction, instability is increased. It is also found that upward throughflow is stabilizing but a modest amount of downward throughflow is destabilizing.  相似文献   

3.
Linear stability analysis was applied to the onset of convection due to internal heating in a porous medium saturated by a nanofluid. A model in which the effects of thermophoresis and Brownian motion are taken into account is employed. We utilized more realistic boundary conditions than in the previous work on this subject; now the nanofluid particle fraction is allowed to adapt to the temperature profile induced by the internal heating, subject to the requirement that there is zero perturbation flux across a boundary. The results show that the presence of the nanofluid particles leads to increased instability of the system. We identified two combinations of dimensionless parameters that are the major controllers of convection instability in the layer.  相似文献   

4.
Linear stability analysis is applied to the onset of convection due to internal heating in a porous medium with weak vertical and horizontal heterogeneity. It is found that the effect of horizontal heterogeneity of each of permeability and thermal conductivity is slightly destabilizing. Increase of permeability in the upward direction is destabilizing and increase in the downward direction is stabilizing, and the reverse is true for increase of conductivity.  相似文献   

5.
The effect of strong heterogeneity on the onset of convection induced by a vertical density gradient in a saturated porous medium governed by Darcy’s law is discussed. The general case, where there is heterogeneity in both the vertical and horizontal directions, and where there is heterogeneity in permeability, thermal conductivity, and applied temperature gradient, is considered. A computer package has been developed to implement an algorithm giving a criterion for instability. This package is applied to the case of a cube partitioned into octants and to the cases where the permeability and thermal conductivity vary continuously across a cube in either a linear or a quadratic manner.  相似文献   

6.
The onset of convection in a horizontal layer of a porous medium saturated by a nanofluid is studied analytically. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. For the porous medium, the Brinkman model is employed. Three cases of free–free, rigid–rigid, and rigid–free boundaries are considered. The analysis reveals that for a typical nanofluid (with large Lewis number), the prime effect of the nanofluids is via a buoyancy effect coupled with the conservation of nanoparticles, whereas the contribution of nanoparticles to the thermal energy equation is a second-order effect. It is found that the critical thermal Rayleigh number can be reduced or increased by a substantial amount, depending on whether the basic nanoparticle distribution is top-heavy or bottom-heavy, by the presence of the nanoparticles. Oscillatory instability is possible in the case of a bottom-heavy nanoparticle distribution.  相似文献   

7.
The effect of local thermal non-equilibrium on the onset of convection in a porous medium consisting of two horizontal layers is studied analytically. Linear stability theory is applied. Variations of permeability, fluid conductivity, solid conductivity, interphase heat transfer coefficient and porosity are considered. It is found that heterogeneity of permeability and fluid conductivity have a major effect, heterogeneity of interphase heat transfer coefficient and porosity have a lesser effect, while heterogeneity of solid conductivity is relatively unimportant.  相似文献   

8.
9.
An analytical investigation of the effect of vertical throughflow on the onset of convection in a composite porous medium consisting of two horizontal layers has been made. The cases of iso-flux and iso-temperature boundaries are both investigated. The critical Rayleigh number depends on a Péclet number $Q$ , a permeability ratio $K_{r}$ , a thermal conductivity ratio $k_{r}$ , and a depth ratio $\delta $ . For the case of small $Q$ an approximate solution is obtained, which shows that in general throughflow has a stabilizing effect whose magnitude may be increased or decreased by the heterogeneity. This solution is supplemented by an asymptotic solution valid for large $Q.$   相似文献   

10.
This paper investigates the onset of convection in a vertical cylinder occupied by a saturated porous medium of vertically heterogeneous permeability. The flow is induced by an applied vertical temperature gradient and an imposed solute concentration gradient. The main interest of this paper is studying the effect of vertical throughflow on the onset of instability in this system. The study is performed using linear stability theory. The problem is of considerable interest for hydrological and geophysical situations.  相似文献   

11.
The effect of strong throughflow and strong heterogeneity on the onset of convection induced by a vertical density gradient in a saturated porous medium governed by Darcy’s law is investigated. The general case, where there is heterogeneity in both the vertical and horizontal directions, and where there is heterogeneity in permeability, thermal conductivity, and applied temperature gradient, is considered. A computer package has been extended to deal with the case of vertical throughflow.  相似文献   

12.
A linear instability analysis has been performed for the onset of convection in a horizontal layer of a porous medium whose permeability pulsates with time as a result of vertical movement of one of the boundaries. It was found that, to a first-order approximation in the pulsation amplitude, the effect of deformation is destabilizing for disturbances whose period is of the order of the thermal diffusion time scale. The effects of the average porosity, pulsation amplitude, and pulsation frequency were investigated.  相似文献   

13.
The effect of strong throughflow and strong heterogeneity on the onset of convection induced by a vertical density gradient in a saturated porous medium governed by Darcy’s law is investigated with the aid of a computer package. The general case, where there is heterogeneity in both the vertical and horizontal directions, and where there is heterogeneity in permeability, thermal conductivity, and applied temperature gradient, is considered. Previous work on the case of non-periodic global variation is now extended to the case of either periodic variation or localized variation.  相似文献   

14.
The onset of convection in a porous layer heated from below is considered, and we determine how the presence of two solid but heat-conducting bounding plates of finite thickness alters the manner in which convection ensues. Heat is generated by the lower plate (with an insulating lower boundary), but the upper one is passive with a fixed upper boundary temperature. It is shown that this composite layer may mimic in turn one of the three different types of classical single-layer onset problems which are well-known in the literature. The type which is selected (or indeed whether it corresponds to a transitional case) depends quite critically on the precise values of the relative thickness of the solid layers and their conductivity ratio. It is also shown that care needs to be taken over declaring that the solid plates are thin: extreme values of the conductivity ratio can yield a stability criterion which appears to be different from that suggested by the imposed boundary conditions.  相似文献   

15.
In the present study, double-diffusive convection in an anisotropic porous layer with an internal heat source, heated and salted from below, has been investigated. The generalized Darcy model is employed for the momentum equation. The fluid and solid phases are considered to be in equilibrium. Linear and nonlinear stability analyses have been performed. For linear theory normal mode technique has been used, while nonlinear analysis is based on a minimal representation of truncated Fourier series. Heat and mass transfers across the porous layer have been obtained in terms of Nusselt number Nu and Sherwood number Sh, respectively. The effects of internal Rayleigh number, anisotropy parameters, concentration Rayleigh number, and Vadasz number on stationary, oscillatory, and weak nonlinear convection are shown graphically. The transient behaviors of Nusselt number and Sherwood number have been investigated by solving the finite amplitude equations using a numerical method. Streamlines, isotherms, and isohalines are drawn for both steady and unsteady (time-dependent) cases. The results obtained, during the above analyses, have been presented graphically, and the effects of various parameters on heat and mass transfers have been discussed.  相似文献   

16.
The effects of hydrodynamic and thermal heterogeneity, for the case of variation in both the horizontal and vertical directions, on the onset of convection in a horizontal layer of a saturated porous medium uniformly heated from below, with weak vertical throughflow, are studied analytically for the case of weak heterogeneity. It is found that when the boundary conditions at the upper and lower boundaries are symmetric, the throughflow magnitude and the permeability and conductivity gradients enter the expression for the critical Rayleigh number at second order. The throughflow on its own is stabilizing but the combination of throughflow and heterogeneity may be either stabilizing or destabilizing.  相似文献   

17.
The effect of vertical throughflow on the onset of convection in a rectangular box occupied by a saturated porous medium uniformly heated from below, is studied using linear stability theory. It is found that, for small values of the throughflow, the stabilizing effect of the throughflow and the stabilizing effect of the confining lateral walls of the box are approximately independent of each other.  相似文献   

18.
Transport in Porous Media - In the present study, a multiple-relaxation-time lattice-Boltzmann method is considered to investigate double-diffusive natural convection in a cavity with heating and...  相似文献   

19.
The effect of time-periodic temperature modulation at the onset of convection in a Boussinesq porous medium saturated by a nanofluid is studied analytically. The model used for the nanofluid incorporates the effects of Brownian motion. Three types of boundary temperature modulations are considered namely, symmetric, asymmetric, and only the lower wall temperature is modulated while the upper wall is held at constant temperature. The perturbation method is applied for computing the critical Rayleigh and wave numbers for small amplitude temperature modulation. The shift in the critical Rayleigh number is calculated as a function of frequency of modulation, concentration Rayleigh number, porosity, Lewis number, and thermal capacity ratio. It has been shown that it is possible to advance or delay the onset of convection by time-periodic modulation of the wall temperature. The nanofluid is found to have more stabilizing effect when compared to regular fluid. Low frequency is destabilizing, while high frequency is always stabilizing for symmetric modulation. Asymmetric modulation and only lower wall temperature modulation is stabilizing for all frequencies when concentration Rayleigh number is greater than one.  相似文献   

20.
The effect of vertical heterogeneity of permeability, on the onset of convection in a horizontal layer of a saturated porous medium, uniformly heated from below but with a non-uniform basic temperature gradient resulting from vertical throughflow, is studied analytically using linear stability theory. It is found that, to first order, a linear variation of the reciprocal of permeability with depth has no effect on the critical value of the Rayleigh number Ra c based on the harmonic mean of the permeability, but a quadratic variation increasing in the upwards direction leads to a reduction in Ra c.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号