首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Modes of particle combustion in iron dust flames   总被引:1,自引:0,他引:1  
The so-called argon/helium test is proposed to identify the combustion mode of particles in iron dust flames. Iron powders of different particle sizes varying from 3 to 34 μm were dispersed in simulated air compositions where nitrogen was replaced by argon and helium. Due to the independence of the particle burning rate on the oxygen diffusivity in the kinetic mode, the ratio between the flame speeds in helium and argon mixtures is expected to be smaller if the particle burning rate is controlled by reaction kinetics rather than oxygen diffusion. Experiments were performed in a reduced-gravity environment on a parabolic flight aircraft to prevent particle settling and buoyancy-driven disruption of the flame. Uniform suspensions of the iron powders were produced inside glass tubes and a flame was initiated at the open end of the tube. Quenching plate assemblies of various channel widths were installed inside the tube and pass or quench events were used to measure the quenching distance. Flame propagation was recorded by a high-speed digital camera and spectral measurements were used to determine the temperature of the condensed emitters in the flame. The measured flame speeds and quenching distances were in good agreement with previously developed one-dimensional, dust flame model where the particles are assumed to burn in a diffusive mode and heat losses are described on a volumetric basis. However, a significant drop of the ratio of flame speeds in helium and argon mixtures was observed for finer 3 μm particles and was attributed to a transition from the combustion controlled by diffusion for larger particles to kinetically controlled burning of micron-size particles. In helium mixtures, the lower flame temperatures measured in suspensions of fine particles in comparison to larger particles reinforces this assumption.  相似文献   

2.
With the dual-plane stereo PIV technique the instantaneous three-dimensional resolved rate-of-strain tensor is directly measured in turbulent premixed flames. Simultaneously, also the instantaneous subgrid scale (SGS) scalar flux is measured with fine resolution, where for the latter term the conditioned particle image velocimetry (CPIV) technique is applied. The subgrid resolution reaches 118 μm, allowing a 9 × 9 resolution of a subgrid filter with width Δ = 1 mm. This combined measurement approach allows the a-priori comparison of models for the SGS scalar flux term with direct measurements which is important for large eddy simulation methods in turbulent premixed flames. Two different flame conditions of a premixed V-shaped turbulent flame are investigated where the turbulence intensity is varied by a factor of nearly three. The instantaneous radial and axial SGS fluxes are compared with the following three models: gradient model with Smagorinsky approach for the turbulent viscosity, Clark model, and extended gradient model with an anisotropy term. None of these models shows a good correlation with the directly measured flux. The anisotropy term alone (being nearly similar to the Clark model) shows, however, a right trend behaviour. An analysis of the data indicates a significant dependency of the experimentally determined SGS flux on the Favre averaged reaction progress (spatially averaged over the SGS area). A relatively simple closure for the SGS flux, which describes the dilatation due to the gasdynamic expansion, and which is a function proportional to , shows a rather good correlation with direct measurement for some of the components. A successful SGS scalar flux model for premixed turbulent flames most likely needs to include at least two different effects.  相似文献   

3.
A 1.5 m long turbulent-wake combustion vessel with a 0.15 m × 0.15 m cross-sectional area is proposed for spatiotemporal measurements of curvature, strain, dilatation and burning rates along a freely downward-propagating premixed flame interacting with a parallel row of staggered vortex pairs having both compression (negative) and extension (positive) strains simultaneously. The wanted wake is generated by rapidly withdrawing an electrically-controlled, horizontally-oriented sliding plate of 5 mm thickness for flame–wake interactions. Both rich and lean CH4/air flames at the equivalence ratios  = 1.4 and  = 0.7 with nearly the same laminar burning velocity are studied, where flame–wake interactions and their time-dependent velocity fields are obtained by high-speed, high-resolution DPIV and laser-tomography. Correlations among curvature, strain, stretch, and dilatation rates along wrinkled flame fronts at different times are measured and thus their influences on front propagation rates can be analyzed. It is found that strain-related effects have significant influence on front propagation rates of rich CH4/air (diffusionally stable) flames even when the curvature weights more in the total stretch than the strain rate does. The local propagation rates along the wrinkled flame front are more intense at negative strain rates corresponding to positive peak dilatation rates but the global propagation rate averaged along the rich flame front remains constant during all period of flame–wake interaction. For lean CH4/air (diffusionally unstable) flames, the curvature becomes a dominant parameter influencing the structure and propagation of the wrinkled flame front, where both local and global propagation rates increase significantly with time, showing unsteady flame propagation. These experimental results suggest that the theory of laminar flame stretch can be applicable to a more complex flame–wake interaction involving unsteadiness and multitudinous interactions between vortices.  相似文献   

4.
Emission spectroscopy of flame fronts in aluminum suspensions   总被引:1,自引:0,他引:1  
Spatially resolved emission spectra from Bunsen-type flames stabilized in aluminum suspensions in air and oxygen–argon/helium mixtures were obtained using a mechanical-optical scanning system. A low resolution (1.5 nm) spectrometer was used to acquire the broad spectra over the 350–1000 nm range, and a high-resolution (0.04 nm) instrument was used for observation of AlO molecular bands and non-ionized atomic aluminum. The temperature of condensed phase emitters in the flame was derived using polychromatic fitting of the continuum spectra to Planck’s law. AlO temperature was found by fitting of the theoretically calculated shape of the band to experimental data. Peak temperatures of the condensed emitters were found to be approximately 3250 K in aluminum-air flames and approximately 3350 K for oxygen–argon/helium flames. Temperatures derived from AlO spectra coincide with the temperature of the condensed emitters with measurement accuracy and are only 100–200 °C lower than the computed equilibrium flame temperatures. The radial distribution of the temperature profile of the continuous emitters was found via Abel deconvolution and recovered the double-front structure of the Bunsen flame cone, with the outer flame being attributed to a diffusion flame of the fuel-rich products with ambient air. The observation of atomic aluminum lines seen in emission from the outer flame edge and partial self-absorption from the inner flame confirms the structure associated with the double-front structure. The implications of these results for the regime of particle combustion in a dust flame are discussed.  相似文献   

5.
Premixed turbulent flames of methane–air and propane–air stabilized on a bunsen type burner were studied using planar Rayleigh scattering and particle image velocimetry. The fuel–air equivalence ratio range was from lean 0.6 to stoichiometric for methane flames, and from 0.7 to stoichiometric for propane flames. The non-dimensional turbulence rms velocity, u′/SL, covered a range from 3 to 24, corresponding to conditions of corrugated flamelets and thin reaction zones regimes. Flame front thickness increased slightly with increasing non-dimensional turbulence rms velocity in both methane and propane flames, although the flame thickening was more prominent in propane flames. The probability density function of curvature showed a Gaussian-like distribution at all turbulence intensities in both methane and propane flames, at all sections of the flame.The value of the term , the product of molecular diffusivity evaluated at reaction zone conditions and the flame front curvature, has been shown to be smaller than the magnitude of the laminar burning velocity. This finding questions the validity of extending the level set formulation, developed for corrugated flames region, into the thin reaction zone regime by increasing the local flame propagation by adding the term to laminar burning velocity.  相似文献   

6.
Characteristics of microjet methane diffusion flames stabilized on top of the vertically oriented, stainless-steel tubes with an inner diameter ranging from 186 to 778 μ m are investigated experimentally, theoretically and numerically. Of particular interest are the flame shape, flame length and quenching limit, as they may be related to the minimum size and power of the devices in which such flames would be used for future micro-power generation. Experimental measurements of the flame shape, flame length and quenching velocity are compared with theoretical predictions as well as detailed numerical simulations. Comparisons of the theoretical predictions with measured results show that only Roper's model can satisfactorily predict the flame height and quenching velocity of microjet methane flames. Detailed numerical simulations, using skeletal chemical kinetic mechanism, of the flames stabilized at the tip of d = 186, 324 and 529 μ m tubes are performed to investigate the flame structures and the effects of burner materials on the standoff distance near extinction limit. The computed flame shape and flame length for the d = 186 μm flame are in excellent agreement with experimental results. Numerical predictions of the flame structures strongly suggest that the flame burns in a diffusion mode near the extinction limit. The calculated OH mass fraction isopleths indicate that different tube materials have a minor effect on the standoff distance, but influence the quenching gap between the flame and the tube.  相似文献   

7.
Effects of tube diameter and equivalence ratio on reaction front propagations of ethylene/oxygen mixtures in capillary tubes were experimentally analyzed using high speed cinematography. The inner diameters of the tubes investigated were 0.5, 1, 2 and 3 mm. The flame was ignited at the center of the 1.5 m long smooth tube under ambient pressure and temperature before propagated towards the exits in the opposite directions. A total of five reaction propagation scenarios, including deflagration-to-detonation transition followed by steady detonation wave transmission (DDT/C–J detonation), oscillating flame, steady deflagration, galloping detonation and quenching flame, were identified. DDT/C–J detonation mode was observed for all tubes for equivalence ratios in the vicinity of stoichiometry. The velocity for the steady detonation wave propagation was approximately Chapman–Jouguet velocity for 1, 2, and 3 mm I.D. tubes; however, a velocity deficit of 5% was found for the case in 0.5 mm I.D. tube. For leaner mixtures, an oscillating flame mode was found for tubes with diameters of 1 to 3 mm, and the reaction front travelled in a steady deflagrative flame mode with velocities around 2–3 m/s when the mixture equivalence ratio becomes even leaner. Galloping detonation wave propagation was the dominant mode for the fuel lean regime in the 0.5 mm I.D. tube. For rich mixtures beyond the detonation limits, a fast flame followed by flame quenching was observed.  相似文献   

8.
Flame spread in an array of thin solids in low-speed concurrent flows was investigated and numerical solved. A previous steady, two-dimensional flame-spread model with flame radiation was employed and adapted in this work. The flame structures of spreading flames between parallel solids were demonstrated and some of the features were presented, including flow channelling effect and flame radiation interactions. The channelling effect is caused by flow confinement by the presence of the other solids; the flows through the hot combustion gases are accelerated downstream drastically. Radiation interactions between flames and solids contributed to a less heat-loss system, and radiation re-absorption by flames resulted in a larger flame with higher temperature, which increased the conductive heat fluxes to the solids and flame spread rate. Consequently, the extinction limit for the interacting flames is extended beyond the low-speed quenching limit for a single flame. The influence of the separation distance on the flame spread rate was also studied, which exhibits a non-monotonic behaviour. At larger separation distance, the flame spread rate increases with decreasing the separation distance owing to the channelling effect and radiation interactions. However, at very small separation distance, the flame spreading rate decreases with decreasing the distance because of the limited space for thermal expansion and flow résistance between solids.  相似文献   

9.
Flame spread experiments in both concurrent and opposed flow have been carried out in a 5.18-s drop tower with a thin cellulose fuel. Flame spread rate and flame length have been measured over a range of 0–30 cm/s forced flow (in both directions), 3.6–14.7 psia, and oxygen mole fractions 0.24–0.85 in nitrogen. Results are presented for each of the three variables independently to elucidate their individual effects, with special emphasis on pressure/oxygen combinations that result in earth-equivalent oxygen partial pressures (normoxic conditions). Correlations using all three variables combined into a single parameter to predict flame spread rate are presented. The correlations are used to demonstrate that opposed flow flames in typical spacecraft ventilation flows (5–20 cm/s) spread faster than concurrent flow flames under otherwise similar conditions (pressure, oxygen concentration) in nearly all spacecraft atmospheres. This indicates that in the event of an actual fire aboard a spacecraft, the fire is likely to grow most quickly in the opposed mode as the upstream flame spreads faster and the downstream flame is inhibited by the vitiated atmosphere produced by the upstream flame. Additionally, an interesting phenomenon was observed at intermediate values of concurrent forced flow velocity where flow/flame interactions produced a recirculation downstream of the flame, which allowed an opposed flow leading edge to form there.  相似文献   

10.
Flame propagation in capillary tubes with smooth circular cross-sections and diameters of 0.5, 1.0, and 2.0 mm are investigated using high-speed photography. Flames were found to propagate and accelerate to detonation speed in stoichiometric ethylene and oxygen mixtures initially at room temperature in all three tube diameters. Ignition occurs at the midpoint along the length of the tube. We observe for the first time transition to detonation in micro-tubes. Detonation was observed with both spark and hot-wire ignition. Tubes with larger diameters take longer to transition to detonation. In fact, transition distance scales with the diameter in our 1.0 and 2.0 mm cases with spark ignition. Flame structures are observed for various stages of the process. Three types of flame propagation modes were observed in the 0.5 mm tube with spark ignition: (a) acceleration to Chapman–Jouguet (CJ) detonation speed followed by constant CJ wave propagation, (b) acceleration to CJ speed, followed by the detonation wave failure, and (c) flame acceleration to a constant speed below the CJ speed of approximately 1600 m/s. The current detonation mechanism observed in capillary tubes is applicable to predetonators for pulsed detonation, micro propulsion devices, safety issues, and addresses fundamental issues raised by recent theoretical and numerical analyses.  相似文献   

11.
A new method is proposed to fabricate nanocrystalline titania (TiO2) films of controlled crystalline size and film thickness. The method uses the laminar, premixed, stagnation flame approach, combining particle synthesis and film deposition in a single step. A rotating disc serves as a combination of substrate-holder and stagnation-surface that stabilizes the flame. Disc rotation repetitively passes the substrates over a thin-sheet, fuel-lean ethylene–oxygen–argon flame doped with titanium tetraisopropoxide. Convective cooling of the back side of the disc keeps the substrate well below the flame temperature, allowing thermophoretic forces to deposit a uniform film of particles that are nucleated and grown via the flame stabilized just below the surface. The particle film grows typically at 1 μm/s. The film is made of narrowly distributed, crystalline TiO2 several nanometers in diameter and forms with a 90% porosity. Analysis shows that the rotation of the stagnation-surface does not reduce the stability of a stagnation flame, nor does it affect the fundamental chemistry of particle nucleation and growth that occurs between the flame and the stagnation surface.  相似文献   

12.
Heating, gasifying and burning processes of a micro plastic-resin particle, which has a diameter of about 200 μm and is suddenly exposed to a hot oxidizing atmosphere, are observed and optically processed by combining a micro schlieren system with a high-speed CCD video camera. The following three devised approaches are introduced: the use of an oxidizing combustion gas downstream of a spark-ignited propane–air lean premixed flame as a sudden heat source, the use of a spherically reformed micro particle on a fine tungsten wire of 5 μm diameter, and the use of a simultaneous direct and schlieren optical system. The first technique realizes slow heating and enables a micro resin particle to undergo the same circumstances as those experienced by plastic-resin particles in the plastic-resin powder combustion. The second approach improves the accuracy and reproducibility of image processing, whereas the third optical system gives simultaneous pictures of the transparent visible image and the schlieren image around a micro resin particle of one heating process. The results show that there exists intense multiple internal bubbling, multiple micro explosions, multiple micro jets and micro diffusion flames, and that their existence exerts strong influences on gasification characteristics of a micro resin particle and results in a high burning rate constant.  相似文献   

13.
A partially prevaporized spray burner was developed to investigate the interaction between fuel droplets and a flame. Monodispersed partially prevaporized ethanol sprays with narrow diameter distribution were generated by the condensation method using rapid pressure reduction of a saturated ethanol vapor–air mixture. A tilted flat flame was stabilized at the nozzle exit using a hot wire. Particle tracking velocimetry (PTV) was applied to measurements of the droplet velocity; the laminar burning velocity was obtained from gas velocity derived from the droplet velocity. Observations were made of flames in partially prevaporized spray streams with mean droplet diameters of 7 μm and the liquid equivalence ratios of 0.2; the total equivalence ratio was varied. In all cases, a sharp vaporization plane was observed in front of the blue flame. Flame oscillation was observed on the fuel-rich side. At strain rates under 50 s−1, the change in the burning velocity with the strain rate is small in fuel-lean spray streams. In spray streams of 0.7 and 0.8 in the total equivalence ratio, burning velocity increases with strain rates of greater than 50 s−1. However, in spray streams with 0.9 and 1.0 in the total equivalence ratio, burning velocity decreases as the strain rate increases. At strain rates greater than 80 s−1, burning velocity decreases with an increased gas equivalence ratio. The effect of mean droplet diameter, and the entry length of droplets into a flame on the laminar burning velocity, were also investigated to interpret the effect of the strain rate on the laminar burning velocity of partially prevaporized sprays.  相似文献   

14.
This work presents experimental evidence that the transition from gas-phase diffusion-limited combustion for aluminum particles begins to occur at a particle size of 10 μm at a pressure of 8.5 atm. Measurements of the particle temperature by AlO spectroscopy and three-color pyrometry indicate that the peak temperature surrounding a burning particle approaches the aluminum boiling temperature as particle size is decreased to 10 μm when oxygen is the oxidizer. This reduction indicates that reactions are occurring at or near the particle surface rather than in a detached diffusion flame. When CO2 is the oxidizer, the combustion temperatures remain near the aluminum boiling temperature for particles as large as 40 μm, indicating that the flame is consistently near the surface throughout this size range. Burn time measurements of 10 and 2.8 μm powders indicate that burn time is roughly proportional to particle diameter to the first power. The burn rates of micron- and nano-particles also show strong pressure dependence. These measurements all indicate that the combustion has deviated from the vapor-phase diffusion limit, and that surface or near-surface processes are beginning to affect the rate of burning. Such processes would have to be included in combustion models in order to accurately predict burning characteristics for aluminum with diameter less than 10 μm.  相似文献   

15.
Flame spreading along a fuel droplet array at microgravity has been studied as a simple model of spray combustion. A three droplet array with a pendulum suspender was employed to investigate interactions between flame spreading and droplet motion in the array direction. Initial droplet diameter was 0.8 mm and fuel was n-heptane. A silicon carbide pendulum suspender of 15 μm in diameter and 30 mm in length was used for the third droplet. The first fixed droplet was ignited by electric spark. Behavior of the flame and the third droplet was observed using a high-speed video camera. Dimensionless span, which is the averaged droplet span divided by the averaged initial diameter of the three droplets, was varied from 2.7 to 10. Large displacement of the movable droplet was observed after group flame grew around the movable droplet. As the initial dimensionless span increased, the averaged droplet speed after the occurrence of flame spreading to the movable droplet increased steeply, taking the maximum value around 5 in initial dimensionless span, and then decreased gradually. The movable droplet advanced toward the second droplet in small spans and moved away from the second droplet in large spans. The direction of the motion changed around 4.6 in initial dimensionless span. Flame spread induction time from the second to the third droplet increased exponentially as the initial dimensionless span was increased. The induction time of flame spreading to a movable droplet was longer than that of flame spreading to a fixed droplet. From calculations of flame spreading along a 20-droplet array, it was predicted that the droplet speed nearly converged after flame spread to the sixteenth droplet. The maximum speed of the nineteenth droplet appeared around 7.5 in the initial dimensionless span.  相似文献   

16.
Velocities and flame front locations are measured simultaneously in a turbulent, side-wall quenching (SWQ) V-shaped flame during flame-wall interaction (FWI) at 1 and 3 bar by means of particle image velocimetry (PIV) and planar laser-induced fluorescence of the OH radical (OH-PLIF). The turbulent flame brush is characterized based on the spatial distribution of the mean reaction progress variable and a common direct method is used to derive the flame surface density (FSD) from the two-dimensional data by image processing. As the near-wall reaction zone is limited to a smaller region closer to the wall at higher pressure, higher peak values are observed in the FSD at 3 bar. A second definition of the FSD adapted for flames exposed to quenching is utilized similar to previous studies emphasizing the impact of FWI. The influence of the wall on the flame front topology is investigated based on a flame front-conditioned FSD and its variability within the data set. In a last step, an estimate of the mean reaction rate is deduced using an FSD model and evaluated in terms of integral and space-averaged values. A decreasing trend of integral mean reaction rate in regions with increasing flame quenching is observed for both operating conditions, but more pronounced at 3 bar. Space-averaged mean reaction rates, however, increase in the quenching region, as the size of the reaction zone decreases.  相似文献   

17.
Characteristics of premixed combustion in a heated channel with an inner diameter smaller than the conventional quenching distance of the employed mixture were investigated experimentally, analytically, and numerically. A cylindrical quartz tube with an inner diameter of 2 mm was used as a model channel. The downstream part of the tube was heated by an external heat source, and hence the temperature gradient in the axial direction was formed in the middle of the tube. Flat and stationary conventional premixed flames were stabilized at a point in this temperature gradient. In addition to these flames, various other flames that exhibit dynamic behaviors such as cyclic oscillatory motions, and repetitive ignition and extinction were also observed experimentally. These flames with large amplitude oscillatory motion might be utilized as a heat source with high speed temporal temperature variations in microsystems for future application. Another stable flame region in extremely low speed criteria at a mixture velocity of 2–3 cm/s was also experimentally confirmed. This flame was inferred to be an example of mild combustion, and it might also be used as a mild heat source for microdevices. The overall stability criteria of these flame regimes were analytically examined, and the detailed structure of each flame on the stable solution branches was numerically examined by employing 1D computation with detailed chemistry. The two results qualitatively agreed with each other and clarified the mechanism of the present various flames and their dynamic characteristics.  相似文献   

18.
Experimental results are presented from an investigation of the effects of large transverse accelerations on flame propagation and blowout limits in premixed step-stabilized flames. The accelerations, which exceed ±10,000 g in the present study, induce large body forces on the high-density reactants and low-density products. These body forces can substantially alter the flame propagation mechanisms and dramatically increase the flame blowout limits. Sustained centripetal accelerations ac ≡ U2/R are created by flowing a premixed propane–air reactant stream with equivalence ratios 0.7  Φ  1.9 at various speeds U through a semicircular channel with radius R. A backward-facing step of height h on the radially outer (ac > 0) or inner (ac < 0) wall stabilizes the flame. For ac > 0 the acceleration acts to force high-density reactants into the recirculation zone and low-density products into the reactant stream, while ac < 0 forces hot products into the recirculation zone and impedes cold reactants from entering this zone. An otherwise identical straight channel provides corresponding baseline (ac = 0) results for comparison. The flow speed U, equivalence ratio Φ, and step height h are systematically varied for ac = 0, ac > 0, and ac < 0. Shadowgraph and chemiluminescence imaging show that as ac→ +∞ the propagation of the flame across the channel becomes independent of the flame burning velocity and instead is primarily due to large-scale “centrifugal pumping” driven by the induced body forces. For ac → −∞ the body forces effectively segregate reactants and products to produce a nearly flat flame. In both cases, for large |ac| values the resulting blowout limits can be substantially higher than those at ac = 0.  相似文献   

19.
We have conducted an experimental study to investigate the synthesis of multi-walled carbon nanotubes (CNTs) in counterflow methane–air diffusion flames, with emphasis on effects of catalyst, temperature, and the air-side strain rate of the flow on CNTs growth. The counterflow flame was formed by fuel (CH4 or CH4 + N2) and air streams impinging on each other. Two types of substrates were used to deposit CNTs. Ni-alloy (60% Ni + 26% Cr + 14% Fe) wire substrates synthesized curved and entangled CNTs, which have both straight and bamboo-like structures; Si-substrates with porous anodic aluminum oxide (AAO) nanotemplates synthesized well-aligned, self-assembled CNTs. These CNTs grown inside nanopores had a uniform geometry with controllable length and diameter. The axial temperature profiles of the flow were measured by a 125 μm diameter Pt/10% Rh–Pt thermocouple with a 0.3 mm bead junction. It was found that temperature could affect not only the success of CNTs synthesis, but also the morphology of synthesized CNTs. It was also found, against previous general belief, that there was a common temperature region (1023–1073 K) in chemical vapor deposition (CVD) and counterflow diffusion flames where CNTs could be produced. CNTs synthesized in counterflow flames were significantly affected by air-side strain rate not through the residence time, but through carbon sources available for CNTs growth. Off-symmetric counterflow flames could synthesize high-quality CNTs because with this configuration carbon sources at the fuel side could easily diffuse across the stagnation surface to support CNTs growth. These results show the feasibility of using counterflow flames to synthesize CNTs for particular applications such as fabricating nanoscale electronic devices.  相似文献   

20.
A premixed methane–air bunsen-type flame is seeded with micron-sized (d32 = 5.6 μm) atomized aluminum powder over a wide range of solid fuel concentrations. The burning velocities of the resulting two-phase hybrid flame are determined using the total surface area of the inner flame cone and the known volumetric flow rate, and spatially resolved flame spectra are obtained with a spectral scanning system. Flame temperatures are derived through polychromatic fitting of Planck’s law to the continuous part of the spectrum. It is found that an increase in the solid fuel concentration changes the aluminum combustion regime from low temperature oxidation to full-fledged flame front propagation. For stoichiometric methane–air mixtures, the transition occurs in the aluminum concentration range of 140–220 g/m3 and is manifested by the appearance of AlO sub-oxide bands and an increase in the flame temperature to 2500 K. The flame burning velocity is found to decrease only slightly with an increase in aluminum concentration, in contrast to the rapid decrease in flame speed, followed by quenching, that is observed for flames seeded with inert SiC particles. The observed behavior of the burning velocity and flame temperature leads to the conclusion that intense aluminum combustion in a hybrid flame only occurs when the flame front propagating through the aluminum suspension is coupled to the methane–air flame.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号