首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study density fluctuations from sediments of a paleolake in central Mexico that was subjected to volcanic perturbations by means of computed tomography (CT) measurements on blocks chiselled out of mines at the lake's bed. The mine walls show laminations corresponding to the alternation of low density diatom sediments and high density volcanic ash depositions. We have previously shown that there is a range of scales where these fluctuations present a self-similar behavior [1]. Here we relate density correlation calculations to the power spectrum of the fluctuations. We show that a scaling region in the power spectrum coincides with the scaling region in the correlations produced by relaxation from intense volcanic perturbations to steady state fluctuations. There appears to be a kink-like crossover in the power spectrum from mid range scaling to a shorter range scale invariance. This, together with the density probability distribution of the fluctuations, draws attention to the dominant role of rare events. We believe that our analysis may be useful for the understanding of other phenomena with similar power spectrum properties, in which a scale invariance in the unperturbed system is altered by external perturbations that induce an additional scaling behavior.  相似文献   

2.
We revised a non-Kolmogorov turbulent power spectrum for the refractive-index fluctuations based on the consistency between the structure function and its power spectrum and the experimental data of recent lidar measurements. We investigate the joint influence of Kolmogorov turbulence from the ground up to 6 km and non-Kolmogorov turbulence above 6 km on the fluctuations in the angle of arrival (AOA) of starlight. WE show that the AOA fluctuations of starlight are mainly determined by Kolmogorov turbulence nearby the receiver. Non-Kolmogorov turbulence is responsible for 20–40% of the total AOA fluctuations for different apertures of the receiver. In addition, the AOA fluctuations induced by non-Kolmogorov turbulence depend on the receiver aperture, outer scale, and intensity of non-Kolmogorov turbulence.  相似文献   

3.
结合对多普勒频谱的分析,提出一种基于双高斯拟合的轴对称-非对称谱(SAS)分析方法。在此方法下,功率谱主要由轴对称功率谱和非轴对称功率谱两部分组成。前者主要由等离子体截止层密度的扰动调制决定,后者主要由波数为k =2k0sinθ 的湍流的极向密度扰动决定。在分析多普勒反射计的数据时,相较于常用的频谱重心(COG)分析方法和相位微分(δ-phase)法,SAS 谱分析不仅提高了求取多普勒频移的准确性,同时还可以获取等离子体中波数为k 的极向湍流的密度扰动强度和截止层的密度扰动强度。  相似文献   

4.
《Infrared physics》1990,30(6):479-487
In this paper it is shown how submillimetre and millimetre flux density measurements of sky fluctuations can be used to infer the characteristics of atmospheric turbulence.Two different approaches have been followed: first, by considering the observed process as due to the atmospheric turbulence, we used the r.m.s. sky fluctuations to derive some physical parametres characterizing the phenomenon; second, by investigating the power spectrum and the autocorrelation function, we derive an empirical model (the AR model) to try to deduce the physical process. In this case, the fitted power spectrum agrees strikingly with that predicted by the theory of a stationary turbulent flow for the atmosphere in the sampled frequency range. This kind of modeling can help to disentangle the atmospheric fluctuations from the extraterrestrial signal in ground-based astrophysical measurements.Measurements of the water vapour content and atmospheric transmission at the Italian Base in Antarctica, where the data have been taken, at the wavelengths of 350 μm, 1 and 2mm are also reported.  相似文献   

5.
We present a quantitative estimate of the anisotropic power and scaling of magnetic field fluctuations in inertial range magnetohydrodynamic turbulence, using a novel wavelet technique applied to spacecraft measurements in the solar wind. We show for the first time that, when the local magnetic field direction is parallel to the flow, the spacecraft-frame spectrum has a spectral index near 2. This can be interpreted as the signature of a population of fluctuations in field-parallel wave numbers with a k(-2)_(||) spectrum but is also consistent with the presence of a "critical balance" style turbulent cascade. We also find, in common with previous studies, that most of the power is contained in wave vectors at large angles to the local magnetic field and that this component of the turbulence has a spectral index of 5/3.  相似文献   

6.
It is well known that atmospheric turbulence causes significant variations of the arrival angle of laser beams used in free-space communications. Usually, angle-of-arrival fluctuations of an optical wave in the plane of the receiver aperture is calculated by Kolmogorov’s power spectral-density model. Unfortunately, recently increasing experimental evidence has shown that atmospheric turbulence statistics does not obey Kolmogorov’s power spectrum model in some parts of the troposphere and stratosphere. These experiments have prompted investigations of the optical-wave propagation through atmospheric turbulence described by nonclassical power spectra. In this paper, employing a new approach and considering a non-Kolmogorov power spectrum with a generalized power law instead of the constant standard power-law value 11/3 and a generalized amplitude factor instead of the constant value 0.033, we derive the variances of the angle-of-arrival fluctuations of the plane and spherical waves in a weak turbulence for the horizontal path. The concise closed-form expressions are obtained and used to analyze the influence of spectral power-law variations on the angle-of-arrival fluctuations. In addition, the outer scale effect is also analyzed.  相似文献   

7.
N.P. Basse   《Physics letters. A》2005,340(5-6):456-460
We will in this Letter report on suggestive similarities between density fluctuation power versus wavenumber on small (mm) and large (Mpc) scales. The small scale measurements were made in fusion plasmas and compared to predictions from classical fluid turbulence theory. The data is consistent with the dissipative range of 2D turbulence. Alternatively, the results can be fitted to a functional form that cannot be explained by turbulence theory. The large scale measurements were part of the Sloan Digital Sky Survey galaxy redshift examination. We found that the equations describing fusion plasmas also hold for the galaxy data. The comparable dependency of density fluctuation power on wavenumber in fusion plasmas and galaxies might indicate a common origin of these fluctuations.  相似文献   

8.
We describe measurements of the decay of pure superfluid turbulence in superfluid 3He-B, in the low temperature regime where the normal fluid density is negligible. We follow the decay of the turbulence generated by a vibrating grid as detected by vibrating wire resonators. Despite the absence of any classical normal fluid dissipation processes, the decay is consistent with turbulence having the classical Kolmogorov energy spectrum and is remarkably similar to that measured in superfluid 4He at relatively high temperatures. Further, our results strongly suggest that the decay is governed by the superfluid circulation quantum rather than kinematic viscosity.  相似文献   

9.
In the past half a century, satellite laser communication has caught the attention of scientists due to its distinct advantages in comparison with conventional satellite microwave communication. For ground-to-satellite and satellite-to-ground data links, the atmosphere is a part of the communication channel; thus, atmospheric turbulence severely degrades the performance of satellite laser communication systems. In general, the Kolmogorov turbulence model is used to study the effect of atmosphere turbulence on satellite laser communications since it has been confirmed by numerous direct measurements of temperature and humidity fluctuations in the atmospheric boundary layer. However, increasing experimental evidence and theoretical investigations have shown that the Kolmogorov theory is sometimes inadequate to describe atmospheric statistics properly, in particular, in some domains of the atmosphere. We analyze the joint influence of Kolmogorov turbulence from the ground to 6 km and non-Kolmogorov turbulence above 6 km on the spot size associated with the uplink and downlink propagation channels for a satellite laser communication system in the geosynchronous orbit, using a power spectrum of non-Kolmogorov turbulence with power law ?5 that describes the refractiveindex fluctuations in the atmosphere above 6 km and considering the combined power spectrum of Kolmogorov and non-Kolmogorov turbulence. Before this analysis, we study the joint influence of the Kolmogorov turbulence from the ground to 6 km and non-Kolmogorov turbulence above 6 km on the scintillation indices of laser beams.  相似文献   

10.
We analyze particle velocity fluctuations in a simulated granular system subjected to homogeneous quasistatic shearing. We show that these fluctuations share the following scaling characteristics of fluid turbulence in spite of their different physical origins: (i) scale-dependent probability distribution with non-Gaussian broadening at small time scales; (ii) spatial power spectrum of the velocity field showing a power-law decay, reflecting long-range correlations and the self-affine nature of the fluctuations; and (iii) superdiffusion of particles with respect to the mean background flow.  相似文献   

11.
We develop a nonlinear two-dimensional fluid model of whistler turbulence that includes effect of electron fluid density perturbations. The latter is coupled nonlinearly with wave magnetic field. This coupling leads essentially to finite compressibility effects in whistler turbulence model. We find from our simulations that despite strong compressibility effects, the density fluctuations follow the evolution of the wave magnetic field fluctuations. In a characteristic regime where large scale whistlers are predominant, the coupled density fluctuations are found to follow a Kolmogorov-like phenomenology in the inertial range turbulence. Consequently, the turbulent energy is dominated by the large scale (compared to electron inertial length) eddies and it follows a Kolmogorov-like k−7/3 spectrum, where k is a characteristic wavenumber.  相似文献   

12.
We derive the primordial power spectrum of density fluctuations in the framework of quantum cosmology. For this purpose we perform a Born-Oppenheimer approximation to the Wheeler-DeWitt equation for an inflationary universe with a scalar field. In this way, we first recover the scale-invariant power spectrum that is found as an approximation in the simplest inflationary models. We then obtain quantum gravitational corrections to this spectrum and discuss whether they lead to measurable signatures in the cosmic microwave background anisotropy spectrum. The nonobservation so far of such corrections translates into an upper bound on the energy scale of inflation.  相似文献   

13.
The impact of angular temperature variations on the thermodynamic variables and real-space correlation functions of black-body radiation are analyzed. In particular, the effect of temperature fluctuations on the number density and energy density correlations of the cosmic microwave background (CMB) is studied. The angular temperature fluctuations are modeled by an isotropic and homogeneous Gaussian random field, whose autocorrelation function is defined on the unit sphere in momentum space. This temperature correlation function admits an angular Fourier transform which determines the density correlations in real space induced by temperature fluctuations. In the case of the CMB radiation, the multipole coefficients of the angular power spectrum defining the temperature correlation function have been measured by the Planck satellite. The fluctuation-induced perturbation of the equilibrium variables (internal energy, entropy, heat capacity and compressibility) can be quantified in terms of the measured multipole coefficients by expanding the partition function around the equilibrium state in powers of the temperature random field. The real-space density correlations can also be extracted from the measured temperature power spectrum. Both the number density and energy density correlations of the electromagnetic field are long-range, admitting power-law decay; in the case of the energy density correlation, the fluctuation-induced correlation overpowers the isotropic equilibrium correlation in the long-distance limit.  相似文献   

14.
吴彤  季小玲  李晓庆  王欢  邓宇  丁洲林 《物理学报》2018,67(22):224206-224206
Nikishov等建立的海洋湍流功率谱模型中,假设了海水有着稳定的分层.但是,实际海水通常不是稳定分层的,温度与盐度的涡流扩散率是不相等的.2017年,Elamassie等建立了考虑这些因素的更合理的海洋湍流功率谱模型.湍流介质中光波空间相干长度等基本特征参量在表征湍流强度和光传输相位校正技术等方面起着重要作用.本文基于Elamassie海洋湍流功率谱模型,重新推导出了海洋湍流中光波结构函数、光波空间相干长度和Fried参数的解析公式,并校验了所得公式的正确性.研究发现:当温度变化引起的光学湍流占主导地位时,Nikishov海洋湍流功率谱模型把湍流强度低估了;当盐度变化引起的光学湍流占主导地位时,Nikishov海洋湍流功率谱模型把湍流强度高估了.基于Elamassie海洋湍流功率谱模型,本文推导出了高斯光束短期光束扩展的半解析公式,并验证了其正确性.研究还表明:海水稳定分层与否,短期光束扩展差异很大.本文研究结果对水下湍流环境中的光通信、成像和传感等应用具有重要意义.  相似文献   

15.
Recently the increasing experimental evidences have shown that atmospheric turbulence statistics does not obey Kolmogorov’s power spectrum model in portions of the troposphere and stratosphere. These experiments have prompted the investigations of optical wave propagation through atmospheric turbulence described by non-classical power spectra. In this paper, using an original approach and considering a non-Kolmogorov power spectrum which uses a generalized power law instead of constant standard power law value 11/3 and a generalized amplitude factor instead of constant value 0.033, the variances of the angle-of-arrival fluctuations of the plane and spherical waves are derived in weak turbulence for a horizontal path. The concise closed-form expressions are obtained and used to analyze the influence of spectral power law variation on the angle-of-arrival fluctuations.  相似文献   

16.
A. Kendl 《Physics letters. A》2011,375(35):3138-3141
A semi-classical nonlinear collisional drift wave model for dense magnetized plasmas is developed and solved numerically. The effects of fluid electron density fluctuations associated with quantum statistical pressure and quantum Bohm force are included, and their influences on the collisional drift wave instability and the resulting fully developed nanoscale drift wave turbulence are discussed. It is found that the quantum effects increase the growth rate of the collisional drift wave instability, and introduce a finite de Broglie length screening on the drift wave turbulent density perturbations. The relevance to nanoscale turbulence in nonuniform dense magnetoplasmas is discussed.  相似文献   

17.
A three-dimensional, nonlinear gyrokinetic simulation of plasma turbulence resolving scales from the ion to electron gyroradius with a realistic mass ratio is presented, where all damping is provided by resolved physical mechanisms. The resulting energy spectra are quantitatively consistent with a magnetic power spectrum scaling of k(-2.8) as observed in in situ spacecraft measurements of the "dissipation range" of solar wind turbulence. Despite the strongly nonlinear nature of the turbulence, the linear kinetic Alfvén wave mode quantitatively describes the polarization of the turbulent fluctuations. The collisional ion heating is measured at subion-Larmor radius scales, which provides evidence of the ion entropy cascade in an electromagnetic turbulence simulation.  相似文献   

18.
We probe nonequilibrium properties of an active bacterial bath through measurements of correlations of passive tracer particles and the response function of a driven, optically trapped tracer. These measurements demonstrate violation of the fluctuation-dissipation theorem and enable us to extract the power spectrum of the active stress fluctuations. In some cases, we observe 1/sqrt[omega] scaling in the noise spectrum which we show can be derived from a theoretical model incorporating coupled stress, orientation, and concentration fluctuations of the bacteria.  相似文献   

19.
Polarization properties of single photon states propagating through the non-Kolmogorov turbulence in a slant channel are studied based on the degree of polarization of quantum field. The degree of polarization of single photon states for linearly polarized quantum beam propagation in a slant turbulent channel are developed. Our results show that the effects of the outer scale fluctuations of atmospheric turbulence and the wavelength difference of the beams on the polarization can be ignored and the smaller inner scale of turbulence and larger zenith angle of communication channel will lead to larger fluctuations of the polarization of single-photon states. The effects of the inner scale of turbulence on polarization of single photon states are more significant for bigger refractive-index power and bigger zenith angles.  相似文献   

20.
Defect-mediated turbulence is shown to exist in media where the underlying local dynamics is deterministically chaotic. While many of the characteristics of defect-mediated turbulence, such as the exponential decay of correlations and a squared Poissonian distribution for the number of defects, are identical to those seen in oscillatory media, the fluctuations in the number of defects differ significantly. The power spectra suggest the existence of underlying correlations that lead to a different and nonuniversal scaling structure in chaotic media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号