首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis and characterization of Ba3CuSb2O9, which has a layered array of Cu2+ spins in a triangular lattice, are reported. The magnetic susceptibility and neutron scattering experiments of this material show no magnetic ordering down to 0.2 K with a θ(CW) = -55 K. The magnetic specific heat reveals a T-linear dependence with a γ = 43.4 mJ K(-2) mol(-1) below 1.4 K. These observations suggest that Ba3CuSb2O9 is a new quantum spin liquid candidate with a S = 1/2 triangular lattice.  相似文献   

2.
The low temperature behaviour of powder Er2Sn2O7 samples has been studied by magnetic susceptibility, heat capacity, and neutron scattering experiments. We report here the absence of magnetic ordering down to 100 mK. Anomalies in the heat capacity can be accounted for through an analysis of the crystal field spectrum observed by inelastic neutron scattering spectroscopy. These new measurements on Er2Sn2O7 suggest a new lower bound for the frustration index of f = |Θ(CW)|/T(N) = 14/0.1 = 140, placing this compound into a highly frustrated regime.  相似文献   

3.
4.
The doping dependence of short-range lattice superstructures in (Y,Ca)Ba2Cu3O6+x has been studied with high-energy x-ray scattering. We observe diffuse features with a well defined periodicity which depend on the oxygen concentration but not on the charge carrier concentration. In addition, we find that diffuse scattering is absent in underdoped YBa2Cu4O8, which does not sustain oxygen defects. Our combined data highlight that the diffuse scattering arises from short-range oxygen ordering and associated lattice distortions. Signatures of stripe ordering or fluctuations are not seen and therefore must be much weaker.  相似文献   

5.
We report detailed measurements of the low temperature magnetic phase diagram of Er2Ti2O7. Heat capacity and time-of-flight neutron scattering studies of single crystals reveal unconventional low-energy states. Er3+ magnetic ions reside on a pyrochlore lattice in Er2Ti2O7, where local XY anisotropy and antiferromagnetic interactions give rise to a unique frustrated system. In zero field, the ground state exhibits coexisting short and long-range order, accompanied by soft collective spin excitations previously believed to be absent. The application of finite magnetic fields tunes the ground state continuously through a landscape of noncollinear phases, divided by a zero temperature phase transition at micro{0}H{c} approximately 1.5 T. The characteristic energy scale for spin fluctuations is seen to vanish at the critical point, as expected for a second order quantum phase transition driven by quantum fluctuations.  相似文献   

6.
Recent experiments on the "hyperkagome" lattice system Na4Ir3O8 have demonstrated that it is a rare example of a three-dimensional spin-1/2 frustrated antiferromagnet. We investigate the role of quantum fluctuations as the primary mechanism lifting the macroscopic degeneracy inherited by classical spins on this lattice. In the semiclassical limit we predict, based on large-N calculations, that an unusual q[over -->]=0 coplanar magnetically ordered ground state is stabilized with no local zero modes that correspond to local deformations of the spin configurations. This phase melts in the quantum limit and a gapped topological Z2 spin liquid phase emerges. In the vicinity of this quantum phase transition, we study the dynamic spin structure factor and comment on the relevance of our results for future neutron scattering experiments.  相似文献   

7.
Crystal structure, magnetic susceptibility, and specific heat were measured in the normal cubic spinel compounds MnSc2S4 and FeSc2S4. Down to the lowest temperatures, both compounds remain cubic and reveal strong magnetic frustration. Specifically the Fe compound is characterized by a Curie-Weiss (CW) temperature ThetaCW = -45 K and does not show any indications of order down to 50 mK. In addition, the Jahn-Teller ion Fe2+ is orbitally frustrated. Hence, FeSc2S4 belongs to the rare class of spin-orbital liquids. MnSc2S4 is a spin liquid for temperatures T>TN approximately 2 K.  相似文献   

8.
We study the magnetic-field-induced quantum phase transition from a gapped quantum phase that has no magnetic long-range order into a gapless phase in the spin-1/2 ladder compound bis(2,3-dimethylpyridinium) tetrabromocuprate (DIMPY). At temperatures below about 1 K, the specific heat in the gapless phase attains an asymptotic linear temperature dependence, characteristic of a Tomonaga-Luttinger liquid. Inelastic neutron scattering and the specific heat measurements in both phases are in good agreement with theoretical calculations, demonstrating that DIMPY is the first model material for an S=1/2 two-leg spin ladder in the strong-leg regime.  相似文献   

9.
We measured two magnetic modes with finite and discrete energies in an antiferromagnetic ordered phase of a geometrically frustrated magnet MgCr2O4 by single-crystal inelastic neutron scattering, and clarified the spatial spin correlations of the two levels: one is an antiferromagnetic hexamer and the other is an antiferromagnetic heptamer. Since these correlation types are emblematic of quasielastic scattering with geometric frustration, our results indicate instantaneous suppression of lattice distortion in an ordered phase by spin-lattice coupling, probably also supported by orbital and charge. The common features in the two levels, intermolecular independence and discreteness of energy, suggest that the spin molecules are interpreted as quasiparticles (elementary excitations with energy quantum) of highly frustrated spins, in analogy with the Fermi liquid approximation.  相似文献   

10.
We have calculated the quantum quadrupolar interaction due to charge density fluctuations of localized 4f-electrons in Ce by taking into account the angular dependence, the degeneracy of the localized 4f -orbitals and the spin-orbit coupling. The calculated crystal field of 4 f electronic states is in good agreement with neutron diffraction measurements. We show that orientational ordering of quantum quadrupoles drives a phase transition at K which we assign with the transformation. In the phase the centers of mass of the Ce atoms still form a face centered cubic lattice. The theory accounts for the first order character of the transition and for the cubic lattice contraction which accompanies the transition. The transition temperature increases linearly with pressure. Our approach does not involve Kondo spin fluctuations as the significant process for the phase transition. Received 19 October 1998  相似文献   

11.
The unusual magnetic properties of a novel low-dimensional quantum ferrimagnet Cu2Fe2Ge4O13 are studied using bulk methods, neutron diffraction, and inelastic neutron scattering. It is shown that this material can be described in terms of two low-dimensional quantum spin subsystems, one gapped and the other gapless, characterized by two distinct energy scales. Long-range magnetic ordering observed at low temperatures is a cooperative phenomenon caused by weak coupling of these two spin networks.  相似文献   

12.
The phonon spectra of metallic disilicides VSi2, NbSi2, and TaSi2 have been studied in detail by inelastic neutron scattering at 300 K and specific heat measurements between 10 K and 250 K. The specific heat calculated from the generalised phonon density of states extracted from neutron measurements is in good agreement with the measured lattice contribution to the specific heat. The properties of the phonon spectra are discussed in relation with other data reported for these isostructural and isoelectronic disilicides.  相似文献   

13.
Recently, neutron scattering data on powder samples of Zn paratacamite, ZnxCu4-x(OH)6Cl2, with small Zn concentration has been interpreted as evidence for valence-bond solid and Néel ordering [S.-H. Lee, Nat. Mater. 6, 853 (2007)10.1038/nmat1986]. We study the classical and quantum Heisenberg models on the distorted kagome lattice appropriate for Zn paratacamite at low Zn doping. Our theory naturally leads to the emergence of the valence-bond solid and collinear magnetic order at zero temperature. Implications of our results to the existing experiments are discussed. We also suggest future inelastic neutron and x-ray scattering experiments that can test our predictions.  相似文献   

14.
We report the results of magnetization and specific heat measurements on Ba{3}CoSb{2}O{9}, in which the magnetic Co{2+} ion has a fictitious spin 1/2, and provide evidence that a spin-1/2 Heisenberg antiferromagnet on a regular triangular lattice is actually realized in Ba{3}CoSb{2}O{9}. We found that the entire magnetization curve including the one-third quantum magnetization plateau is in excellent quantitative agreement with the results of theoretical calculations. We also found that Ba{3}CoSb{2}O{9} undergoes a three-step transition within a narrow temperature range.  相似文献   

15.
A.S.T. Pires 《Physica A》2011,390(15):2787-2793
We study the effect of frustration between nearest and next-nearest neighbors of the quantum S=1 anisotropic Heisenberg model on a square lattice using the bond operator technique. A single-site anisotropy term induces a quantum phase transition in the system. We calculate the effect of zero-temperature quantum fluctuations on the magnetization for the Néel and collinear antiferromagnetic phases.  相似文献   

16.
We report a neutron scattering study of the long-wavelength dynamic spin correlations in the model two-dimensional S = 1/2 square lattice Heisenberg antiferromagnets Sr2CuO2Cl2 and Sr2Cu3O4Cl2. The characteristic energy scale, omega(0)(T/J), is determined by measuring the quasielastic peak width in the paramagnetic phase over a wide range of temperature ( 0.2 less similarT/J less similar0.7). The obtained values for omega(0)(T/J) agree quantitatively between the two compounds and also with values deduced from quantum Monte Carlo simulations. The combined data show scaling behavior, omega approximately xi(-z), over the entire temperature range with z = 1.0(1), in agreement with dynamic scaling theory.  相似文献   

17.
Spin correlations in the paramagnetic phase of La(2)CuO(4) have been studied using polarized neutron scattering, with two important results. First, the temperature dependence of the characteristic energy scale of the fluctuations and the amplitude of the neutron structure factor are shown to be in quantitative agreement with the predictions of the quantum nonlinear sigma model. Second, a comparison of a high-temperature series expansion of the equal-time spin correlations with the diffuse neutron intensity provides definitive experimental evidence for ring exchange.  相似文献   

18.
The magnetic excitations in multiferroic TbMnO3 have been studied by inelastic neutron scattering in the spiral and sinusoidally ordered phases. At the incommensurate magnetic zone center of the spiral phase, we find three low-lying magnons whose character has been fully determined using neutron-polarization analysis. The excitation at the lowest energy is the sliding mode of the spiral, and two modes at 1.1 and 2.5 meV correspond to rotations of the spiral rotation plane. These latter modes are expected to couple to the electric polarization. The 2.5 meV mode is in perfect agreement with recent infrared-spectroscopy data giving strong support to its interpretation as a hybridized phonon-magnon excitation.  相似文献   

19.
The main feature in the elastic neutron scattering of La2-xSrxCuO4 is the existence of incommensurate peaks with positions that jump from 45 degrees to 0 degrees at 5% doping. We show that the spiral state of the t-t(')-t(')-J model with realistic parameters describes these data perfectly. We explain why in the insulator the peak is at 45 degrees while it switches to 0 degrees precisely at the insulator-metal transition. The calculated positions of the peaks are in agreement with the data in both phases.  相似文献   

20.
The spin-lattice coupling plays an important role in strongly frustrated magnets. In ZnCr2O4, an excellent realization of the Heisenberg antiferromagnet on the pyrochlore network, a lattice distortion relieves the geometrical frustration through a spin-Peierls-like phase transition at T(c)=12.5 K. Conversely, spin correlations strongly influence the elastic properties of a frustrated magnet. By using infrared spectroscopy and published data on magnetic specific heat, we demonstrate that the frequency of an optical phonon triplet in ZnCr2O4 tracks the nearest-neighbor spin correlations above T(c). The splitting of the phonon triplet below T(c) provides a way to measure the spin-Peierls order parameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号