首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We perform model calculations for the electrical and thermal conductivity of aluminium plasma within the generalized linear response method of Zubarev for temperatures of (5–25) eV and densities of (0.01–10) g/cm3. The composition in the expanded plasma region is determined by considering higher ionization states up to 5+ and solving the respective system of coupled mass action laws. Besides this chemical picture, a generalized Thomas‐Fermi model is applied to calculate the equation of state and the average charge state of the ions for densities near and above solid state density. Interactions between the various species are treated on T matrix level. Numerical results for the electrical and thermal conductivity of aluminium plasma are compared with experimental data and, for high densities, also with results of a Born approximation with respect to a weak electron‐ion pseudopotential.  相似文献   

2.
3.
We report a novel nanoscale thermal platform compatible with extreme temperature operation and real-time high-resolution transmission electron microscopy. Applied to multiwall carbon nanotubes, we find atomic-scale stability to 3200 K, demonstrating that carbon nanotubes are more robust than graphite or diamond. Even at these thermal extremes, nanotubes maintain 10% of their peak thermal conductivity and support electrical current densities approximately 2 x 10{8} A/cm{2}. We also apply this platform to determine the diameter dependence of the melting temperature of gold nanocrystals down to three nanometers.  相似文献   

4.
We report the first experimental evidence for a metallic phase in fluid molecular oxygen. Our electrical conductivity measurements of fluid oxygen under dynamic quasi-isentropic compression show that a nonmetal-metal transition occurs at 3.4 fold compression, 4500 K, and 1.2 Mbar. We discuss the main features of the electrical conductivity dependence on density and temperature and give an interpretation of the nature of the electrical transport mechanisms in fluid oxygen at these extreme conditions.  相似文献   

5.
The electrical conductivity of fully ionized moderately nonideal plasmas with coulomb interaction parameters 0.1 < ? ? 1 where ? = Ze2n1/3/KT is the ratio of coulomb and thermal energies is calculated for displaced Maxwell and Fermi electron distributions, respectively. The electrons are scattered by an effective coulomb potential ?(r) = Zer-1 exp (-r/?) which considers binary (0 < r < ?) and many-body (? < r < ?) interactions. The shielding distance is given by ? = ?(4?n/3Z)-1/3 with ? = ?0?-N ~ 1 for classical plasmas and ? = ?(4?n/3Z)-1/3 with ? = ?0?-N?-M ~ 1 for quantum plasmas, where ? = Ze2n1/3/h2 m-1n2/3 is the ratio of coulomb interaction and quantum potential energies of the electrons. It is shown that the resulting conductivity formulas are applicable to densities up to four orders of magnitude higher than those of the ideal conductivity theory, which breaks down at higher densities because the Debye radius loses its physical meaning as a shielding length and upper impact parameter.  相似文献   

6.
Electrical conductivity of graphene sheets is studied in the presence of coupling between lattice optical vibrations and electrons. Green's function approach is implemented to find the temperature behavior of electrical conductivity. Moreover, the effect of electronic doping on the electrical conductivity of graphene with electron–phonon interaction is investigated. Our results show that electrical conductivity increases as a function of temperature at low temperature and gets a maximum value and then decays at high temperature.  相似文献   

7.
8.
9.
A simple mechanism is proposed to explain the variation of electrical conductivity in polyazomethines. The results of semiempirical, all valence, molecular orbital calculations obtained from the PM3 method have been employed to arrive at the mechanism. The difference of energy (ΔE) between highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) alone could not explain the variation in electrical conductivity; however, ΔE together with the LUMO electron density at the atoms that lie on the continuous chain could account for the electrical conductivity in these polymers. The LUMO electron density on these centers may be visualized as the carrier movement. In certain polymers there are intrinsic holes in HOMO. The movement of these intrinsic holes also adds to the electrical conduction. The polyazomethines are prepared by the condensation of diamines with azo bis-aldehydes. A few of these polymers were doped with silver nanoparticles. Many of the doped polymers showed substantial enhancement in conductivity. Strong polymer–dopant interaction, identified by IR spectroscopy, is proposed to be responsible for the increase in conductivity.  相似文献   

10.
获得覆盖较宽温度和压力范围内的等离子体热力学和输运性质是开展等离子体传热和流动过程数值模拟的必要条件.本文通过联立Saha方程、道尔顿分压定律以及电荷准中性条件求解等离子体组分;采用理想气体动力学理论计算等离子体热力学性质;基于Chapman-Enskog方法求解等离子体输运性质.利用上述方法计算了压力为0.1, 1.0和10.0 atm (1 atm=101325 Pa),电子温度在300—30000 K范围内,非局域热力学平衡(电子温度不等于重粒子温度)条件下氩-氮等离子体的热力学和输运性质.结果表明压力和非平衡度会影响等离子体中各化学反应过程,从而对氩-氮等离子体的热力学及输运性质有较大的影响.在局域热力学平衡条件下,计算获得的氩-氮等离子体输运性质和文献报道的数据符合良好.  相似文献   

11.
Phase transitions in selenium are studied by time-resolved measurements of the electrical conductivity under shock compression at a pressure of up to 32 GPa. The pressure dependence of the electrical conductivity (σ(P)) has two portions: a sharp increase at P < 21 GPa and a plateau at P > 21 GPa. The experimental data and the temperature estimates indicate that, at P < 21 GPa, selenium is in the semiconductor state. The energy gap of semiconducting selenium decreases substantially under compression. At P > 21 GPa, the electrical conductivity saturates at ~104 Ω?1 cm?1. Such a high value of the electrical conductivity shows the effective semiconductor-metal transition taking place in shock-compressed selenium. Experiments with samples having different initial densities demonstrate the effect of temperature on the phase transition. For example, powdered selenium experiences the transition at a lower shock pressure than solid selenium. Comparison of the temperature estimates with the phase diagram of selenium shows that powdered selenium metallizes in a shock wave as a result of melting. The most plausible mechanism behind the shock-induced semiconductor-metal transition in solid selenium is melting or the transition in the solid phase. Under shock compression, the metallic phase arises without a noticeable time delay. After relief, the metallic phase persists for a time, delaying the reverse transition.  相似文献   

12.
This paper studies the effect of orbital ordering of the electron density on the electrical properties of transition metal compounds including electron-deformation [strain] interaction. The electrical conductivity was calculated on the basis of the Kubo equation. It is shown that in a certain temperature region, orbital ordering is realized in the electron subsystem. The destruction of the ordered state can take place by a I or II order phase transition as a function of the amount of electron-deformation interaction. There is a finite jump in the electrical conductivity function at the point of disorder. The activation energy in the ordered state is greater than in the disordered state. The results of the calculations coincide with the experimental data on the electrical resistance of compounds with a spinel and perovskite structure containing Jahn-Teller ions.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 12, pp. 31–36, December, 1986.The authors express their gratitude to I. Ya. Kanovskii for his valuable discussions on the obtained results.  相似文献   

13.
Different from electrons and holes in traditional inorganic semiconductors, the charge carriers in polymer semiconductors are spin polarons and spinless bipolarons. In this paper, a theoretical model is presented to describe the spin-polarized injection of electrical currents from a ferromagnetic contact into a nonmagnetic polymer semiconductor. In this model, a new relation of conductivity to concentration polarization for polymer semiconductors is introduced based on a three-channel model to describe the spin-polarized injection of electrical currents under large electrical current densities. The calculated results of the model reveal the effects of the polaron ratio, the carrier concentration polarization, the interfacial conductance, the bulk conductivity of materials, and the electrical current density, etc. on the spin polarization of electrical currents. As conclusions, the large and matched bulk conductivity of materials, the small spin-dependent interfacial conductance, the thin polymer thickness and the large enough electrical current are critical factors for upgrading the spin polarization of electrical currents in polymer semiconductors. Particularly, when the polaron ratio in polymer semiconductors approaches the concentration polarization of the ferromagnetic contact, a modest concentration polarization is sufficient for achieving a nearly complete spin-polarized injection of electrical currents.  相似文献   

14.
Hydrogen, nitrogen, oxygen, cesium, and rubidium undergo nonmetal–metal (NMM) transitions in the degenerate warm fluid phase. It is quite likely that all these fluids are monatomic or very nearly so. For N, O, and H, these NMM transitions occur under quasi-isentropic compression to ~100?GPa (1?Mbar) pressures and densities of ~10 times initial liquid density in the case of H. These conditions were achieved with a two-stage gun. In the cases of Cs and Rb, these transitions occur at only ~0.01?GPa in the expanded fluid at 2000?K. These NMM transitions are Mott transitions. The values of the minimum metallic conductivities are essentially the same for all five because minimum metallic conductivity depends weakly on density of metallization and number of conduction electrons per atom. In contrast, the density dependences of the semiconductivities are very different. In the spirit of Mott, quantum mechanical wave functions of the free atoms are used to estimate the densities at which semiconductivies are appreciable. The radial extents of the charge-density distributions are well correlated with the Mott-scaled density dependences of the semiconductivities. These radial extents depend on the degree to which the filled-electron core screens the valence electron(s) from the nuclear Coulomb force. This simple picture gives a qualitative explanation for the density dependences of the semiconductivities of all five and for the Herzfeld criterion, which predates quantum mechanics.  相似文献   

15.
In this article we shall look a bit more closely at some of the fundamental plasma parameters obtained by a cylindrical Langmuir probe within low-pressure electrical gas discharge plasma. The presented measurements were made in argon and in helium glow discharge plasmas. We are mainly concerned with the densities of the charged particles (electrons and ions) within the plasma and the effect of the discharge conditions upon them. The electron density is calculated from the electron current at the space potential and from the integration over the EEDF. The ion density is calculated by using the OML collisionless theory. The parameterization of Laframboise's numerical results is also used for the ion density calculation. In the range of our experimental conditions the results of plasma density, for both gases, tend to show that the ion densities measured with the OML and Laframboise theories exceeds the measured electron densities. The results also show that the plasma electron and ion densities increased with both discharge power and gas pressure.  相似文献   

16.
The steady flow and heat transfer of an electrically conducting fluid with variable viscosity and electrical conductivity between two parallel plates in the presence of a transverse magnetic field is investigated. It is assumed that the flow is driven by combined action of axial pressure gradient and uniform motion of the upper plate. The governing nonlinear equations of momentum and energy transport are solved numerically using a shooting iteration technique together with a sixth-order Runge-Kutta integration algorithm. Solutions are presented in graphical form and given in terms of fluid velocity, fluid temperature, skin friction and heat transfer rate for various parametric values. Our results reveal that the combined effect of magnetic field, viscosity, exponents of variable properties, various fluid and heat transfer dimensionless quantities and the electrical conductivity variation, have significant impact on the hydromagnetic and electrical properties of the fluid.  相似文献   

17.
李屹同  沈谅平  王浩  汪汉斌 《物理学报》2013,62(12):124401-124401
利用水热法生成了形状规则、粒径均匀的球形ZnO纳米颗粒, 并超声分散于水中, 制备得到稳定的水基ZnO纳米流体. 实验测量水基ZnO纳米流体在体积分数和温度变化时的电导率, 并测试室温下水基ZnO纳米流体在不同体积分数下的热导率. 实验结果表明, ZnO纳米颗粒的添加较大地提高了基液(纯水)的热导率和电导率, 水基ZnO纳米流体的电导率随纳米颗粒体积分数增加呈非线性增加关系, 而电导率随温度变化呈现出拟线性关系; 纳米流体的热导率与纳米颗粒体积分数增加呈近似线性增加关系. 本文在经典Maxwell热导模型和布朗动力学理论的基础上, 同时考虑了吸附层、团聚体和布朗运动等因素对热导率的影响, 提出了热导率修正模型.将修正模型预测值与实验值对比, 结果表明修正模型可以较为准确地计算出纳米流体的热导率. 关键词: 水热法 电导率 热导率 热导模型  相似文献   

18.
F. Warkusz 《Surface science》1988,200(2-3):394-402
A grain boundary model is proposed for the calculation of metal film conductivity, in which three electron scattering mechanisms operate simultaneously. These are: isotropic background scattering, scattering caused by distributions of potential barriers which represent the grain boundaries, and the electron scattering at the external film surfaces. The electrical conductivity of such films has been calculated.  相似文献   

19.
陈云云  郑改革  顾芳  李振华 《物理学报》2012,61(15):154202-154202
本文通过提出电势影响因子的概念描述了尘埃粒子与背景等离子体之间的电势差对等离子体电导率的影响. 电势影响因子与尘埃粒子的电荷数、数密度、半径以及背景等离子体电子数密度成正比, 而与背景等离子体电子温度成反比. 在考虑尘埃粒子电势影响下, 推导和完善了尘埃等离子体的复电导率模型. 选取火箭喷焰为典型实例, 分析比较了微波和近红外波段范围内, 考虑和不考虑电势差影响两种情况下的复电导率. 结果表明, 在给定的尘埃等离子体参数条件下, 随着入射电磁波频率的增大, 电势差对复电导率的影响在减小, 当入射频率增加至给定的近红外区域时, 电势差对复电导率虚部的影响可以忽略.  相似文献   

20.
V. Vyurkov  V. Ryzhii 《JETP Letters》2008,88(5):322-325
The effect of the Coulomb scattering on graphene conductivity in field-effect transistor structures is discussed. Interparticle scattering (electron-electron, hole-hole, and electron-hole) and scattering on charged defects are taken into account in a wide range of gate voltages. It is shown that an intrinsic conductivity of graphene (purely ambipolar system, where both electron and hole densities exactly coincide) is defined by a strong electron-hole scattering. It has a universal value independent of the temperature. We give an explicit derivation based on the scaling theory. When there is even a small discrepancy in the electron and hole densities caused by the applied gate voltage, the conductivity is determined by both a strong electron-hole scattering and a weak external scattering: on the defects or phonons. We suggest that the density of the charged defects (occupancy of defects) depends on the Fermi energy to explain the sublinear dependence of conductivity on a fairly high gate voltage observed in the experiments. We also eliminate the contradictions between the experimental data obtained in the deposited and suspended graphene structures regarding the graphene conductivity. The text was submitted by the authors in English.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号