首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have developed a near-field optical probe that uses a triangular metallic plate with a three-dimensionally tapered apex as a light source for thermally assisted magnetic recording. Numerical analysis using a finite-element method shows that the size of the optical spot generated at the apex is 15 nm x 20 nm, and the efficiency (defined as the ratio between the power of the optical near field at the surface of the recording medium and that of the incident light) is 15% when the incident light is focused by a lens with a numerical aperture of 0.8. The metallic plate was fabricated on the surface of a quartz slider and used for writing marks on a phase change recording medium. The marks were observed with a scanning electron microscope, and we confirmed that marks with a diameter of 40 nm were successfully written on the medium.  相似文献   

2.
We describe the creation and implementation of a near-field scanning solid immersion microscope that is specifically tailored for use in microfluidic systems. The microscope comprises a newly fabricated Weierstrass solid immersion lens (SIL), which is detached from its substrate and is free floating in the fluid, and a laser optical tweezer, which serves both as a trapping beam for alignment and positioning of the SIL and as a near-field scanning beam that images the sample through the SIL. A discussion of the SIL's fabrication method is presented along with experimental results that demonstrate the effectiveness of our microscope design.  相似文献   

3.
A high numerical aperture binary phase micro-Fresnel zone plate (FZP) is designed and fabricated on a glass substrate by using a focused ion beam technique. Focusing characteristics of the phase micro-FZP are measured by a near-field scanning optical microscope using linearly polarized light as an illumination source. It is found that an asymmetric spot with subwavelength beam width and elongated depth of focus can be obtained from the phase micro-FZP. Furthermore, the measurement is shown to be consistent with the calculation result. Further, the tolerance in fabrication errors like tilt of side walls on focusing is discussed with numerical simulations.  相似文献   

4.
The research on the setup and application of scanning near-field optical microscopy (SNOM) performed in our laboratory is reviewed in this report. We have constructed a versatile low temperature scanning near-field optical microscope with the capability of near-field imaging and spectroscopy, operating at liquid nitrogen temperature. A special designed coaxial double lens was used to introduce the illumination beam through a 200μm fiber; the detected optical signal was transmitted via a fiber tip to an avalanche photon detector. The performance test shows the stability of the new design. The shear force image and optical image of a standard sample are shown. A system of SNOM working at room temperature and atmosphere was used to characterize semiconductors and bio-molecular samples. It revealed the unique features of semiconductor microdisks in the near-field that is significantly different from that of far-field. The effects of different geographic microstructures on the near-field light distribution of InGaP, GaN, and InGaN multi-quantum-well microdisk were observed.  相似文献   

5.
We report on the development of a cantilever-based scanning near-field optical microscope (SNOM) working in an extreme environment, at cryogenic temperature around 10 K and under strong magnetic field up to 7 T. We designed a new optical system based on an infinite conjugate microscope, which extracts the near-field signal from a small aperture through a narrow chamber into free space as collimated light. Using this system, we successfully measured near-field and topographical images of a metal-hole sample simultaneously. Combining the local optical accessing technique with the external control of the electronic state, this SNOM system will be a powerful tool to study optical properties of semiconductor nanostructures.  相似文献   

6.
The super-resolution capability of scanning near-field optical microscopy (SNOM) with a gold particle is studied by the two-dimensional finite-difference time-domain (2D FDTD) method. We obtain SNOM signals by integrating the far field within the numerical aperture of an objective lens for a refractive index grating by scanning optically trapped gold particles with different diameters illuminated by focused laser light at the wavelength of 515 nm. The signal is strong at a high refractive index of the grating and exhibits similar behavior to that obtained in the experiment with the grating fabricated on a planar light waveguide circuit with a period of 1060 nm. Furthermore, the signal modulation increases as the gold particle diameter decreases and reaches 0.82 at a diameter of 50 nm.  相似文献   

7.
Realization of a near-field optical virtual probe based on an evanescent Bessel beam is strongly dependent on a radially polarized beam; this makes it essential to study the focusing property of the beam. In this paper, two experimental setups based on a fiber device and a liquid crystal device, respectively, are built to generate a radially polarized beam. This beam and an annular radially polarized beam are focused by means of a high numerical aperture objective and a solid immersion lens (SIL). Near-field distribution of the focus spot, the evanescent Bessel field, is experimentally measured with a scanning near-field optical microscope (SNOM). The full width at half maximum (FWHM) of the central peak of the evanescent Bessel field is about 200 nm in the close vicinity of the bottom surface of SIL. This has potential for use as a near-field optical virtual probe.  相似文献   

8.
To demonstrate light-path manipulation in arbitrary shapes we fabricated coupled-resonator optical waveguides (CROWs) having a 90 degrees-corner structure on a lithographically patterned substrate. The spectra of propagation light within the CROWs were directly measured by guide-collection-mode near-field scanning optical microscopy. The spectra revealed that the propagation light through the CROWs has a larger transverse-magnetic polarization mode than a transverse-electric (TE) one. The most plausible cause of the lower intensity in the TE mode is that light leaks out to the Si substrate.  相似文献   

9.
李嘉明  唐鹏  王佳见  黄涛  林峰  方哲宇  朱星 《物理学报》2015,64(19):194201-194201
研究光在微纳结构中的分布与传播, 实现在纳米范围内操纵光子, 对于微型光学芯片的设计有着重要意义. 本文利用聚焦离子束刻蚀方法, 在基底为石英玻璃的150 nm厚金膜上刻制了不同参数的阿基米德螺旋微纳狭缝结构, 通过改变入射光波长、手性、及螺旋结构手性和螺距等方式, 在理论和实验上系统地研究了阿基米德螺旋微纳结构中的表面等离激元聚焦性质. 我们发现, 除了入射激光偏振态、螺旋结构手性之外, 结构螺距与表面等离激元波长的比值也可以用来控制结构表面电场分布, 进而在结构中心形成0阶、1阶乃至更高阶符合隐失贝塞尔函数的涡旋电场. 通过相位分析, 我们对涡旋电场的成因进行了解释. 并利用有限时域差分的模拟方法计算了不同螺距时, 结构中形成的电场及相应空间相位分布. 最后利用扫描近场光学显微镜, 观测结构中不同的光场分布, 在结构中心得到了亚波长的聚焦光斑及符合不同阶贝塞尔函数的涡旋形表面等离激元聚焦环.  相似文献   

10.
We designed and fabricated a multilayer Laue lens(MLL) as a hard X-ray focusing device.WSi_2/Si multilayers were chosen owing to their excellent optical properties and relatively sharp interface.The multilayer sample was fabricated by using direct current(DC) magnetron sputtering technology and then was sliced and thinned to form an MLL.The thickness of each layer was determined by scanning electron microscopy(SEM) image analysis with marking layers.The focusing property of the MLL was measured at Beamline 15 U,Shanghai Synchrotron Facility(SSRF).One-dimensional(1D) focusing resolutions of 92 nm are obtained at photon energy of 14 keV.  相似文献   

11.
Optical properties of metallic edge-like structures known as knife-edges are a topic of interest and possess potential applications in enhanced Raman scattering, optical trapping, etc. In this work, we investigate the near-field optical polarization response at the edge of a triangular gold nanosheet, which is synthesized by a wet chemical method. A homemade scanning near-field optical microscope(SNOM) in collection mode is adopted, which is able to accurately locate its probe at the edge during experiments. An uncoated straight fiber probe is used in the SNOM, because it still preserves the property of light polarization though it has the depolarization to some extent. By comparing near-field intensities at the edge and glass substrate, detected in different polarization directions of incident light, the edge-induced depolarization is found,which is supported by the finite differential time domain(FDTD) simulated results. The depolarized phenomenon in the near-field is similar to that in the far-field.  相似文献   

12.
We have developed a scanning near-field optical microscope with an optically trapped metallic particle that has a small diameter compared to the wavelength of visible light. In this microscope we employed spot illumination to enhance the intensity of light scattered from a probe particle so we could reduce the diameter of the probe particle to 40nm. We detected slight irregularities of the surface of the cover glass near 10-nm depth. Also, we observed gold colloidal particles on the surface of the cover glass.  相似文献   

13.
Theoretical study on the image formation in scanning near-field optical microscopy is carried out in the framework of the direct moment method. Information brought, respectively, by the propagating and evanescent components in the optical near field that is collected by a scanning fiber tip with a sub-wavelength aperture is numerically and systematically analyzed in the light of the resolution achieved by the microscope. The analyses reveal that resolutions beyond the diffraction limit can be achieved even in the absence of the evanescent waves. That is, it is incorrect or at least incomplete to believe that a microscope that collects only the propagating waves is limited by the diffraction. Our studies show that a scanning near-field optical microscope can achieve resolutions beyond the diffraction limit by collecting only the propagating waves.  相似文献   

14.
胡睿璇  潘冰洋  杨玉龙  张伟华 《物理学报》2017,66(14):144209-144209
随着纳米科学技术的发展,如何打破光学衍射极限,将光学显微术的分辨本领推进到纳米尺度,已经成为光学领域的一个核心议题.在此背景下,过去的三十年间,发展了多种超分辨光学显微技术,并在生物、材料、化学领域取得了一系列令人瞩目的应用.本文以衍射理论为线索,回顾各类基于线性成像系统的超分辨光学显微技术;对以固浸物镜、结构光照明、扫描近场光学显微术、完美透镜以及超振荡透镜为代表的超分辨光学显微技术进行综述,讨论各种技术的原理,对其特点、应用与局限加以总结,并对该领域的未来发展予以展望.  相似文献   

15.
A GaP microlens for collecting laser light was developed in the tip of a near-field probe. It is important to realize a near-field optical probe head with high throughput and a small spot size. The design and fabrication results of the GaP microlens array are described. The most suitable GaP microlens with a probe was calculated as having a 10 μm radius using the two-dimensional finite difference time domain (2-D FDTD) method. The full width half maximum (FWHM) spot size variation and optical power density tolerance were calculated as 157 nm ± 5 nm and 7%, respectively. A spherical GaP microlens was fabricated with a radius of 10 μm by controlling the Cl2/Ar gas mixture ratio. The difference between the theoretical spherical shape and the fabricated GaP microlens was evaluated as 40 nm at peak to valley. The FWHM spot size and optical throughput of the fabricated microlens were measured as 520 nm and 63%, respectively. The microlens was the same as a theoretical lens with a 10 μm radius. The micron-lens array fabrication process for a near-field optical head was demonstrated in this experiment.  相似文献   

16.
We have developed a novel probe with a nanometric metallized protrusion extending through a subwavelength aperture to increase optical near-field excitation and collection efficiencies. The apex diameter of the fabricated metallized protrusion was 35 nm. The Intensity distribution of the optical near-field at the apex of the probe was measured by scanning another probe across the apex, and it was observed that strong optical near-field was generated at the apex of the metallized protrusion. The width of the intensity distribution was 150 nm including instrumental resolution. Probes with spherical and ellipsoidal metallized protrusion were also fabricated, by which enhancement of the optical near-field is expected due to localized plasmon excitation.  相似文献   

17.
We report on the detection of the optical near field of a 1D gold particle array by using an apertureless scanning near-field optical microscope. The strong near-field confinement measured above the grating proves unambiguously the near-field origin of the detected optical signal. Comparing the experiment with theory leads us to assign the optical near field to the first diffracted order of the grating, which is evanescent.  相似文献   

18.
We present an overview of recent progress in "plasmonics". We focus our study on the observation and excitation of surface plasmon polaritons (SPPs) with optical near-field microscopy. We discuss in particular recent applications of photon scanning tunnelling microscope (PSTM) for imaging of SPP propagating in metal and dielectric wave guides. We show how near-field scanning optical microscopy (NSOM) can be used to optically and actively address remote nano objects such as quantum dots. Additionally we compare results obtained with near-field microcopy to those obtained with other optical far-field methods of analysis such as leakage radiation microscopy (LRM).  相似文献   

19.
We have measured surface photoluminescence properties of Si-doped bulk GaAs using a near-field scanning optical microscope. An apertured fiber probe tip is used as an emitter of excitation laser as well as a collector of luminescence from GaAs. Due to the Fabry-Perot etalon effect, the excitation laser is reflected or transmitted with an oscillation period of λ.He-Ne/2 as the gap between the tip and the GaAs surface varies. The luminescence from GaAs also varies with an oscillation period of λGaAs/2 due to the same etalon effect. Therefore, the intensity of luminescence light collected by the probe tip shows a beating between two oscillations of different periods. When the probe approaches the GaAs surface, the collected luminescence intensity increases due to tunneling of evanescent wave. On the other hand, when we collect the luminescence using a lens, the intensity also increases due to similar coupling of evanescent wave into propagating wave in spite of a shadowing effect of the wide metal coating.  相似文献   

20.
We report a near-field study of the excitation and propagation of surface plasmon on ordered Ag elliptical hole arrays with a scattering-type scanning near-field optical microscope. Strong dipole-like local plasmon is identified at each individual hole from near-field optical intensity and phase images. The excitation of the local plasmon at the elliptical hole is found to follow polarization excitation constraint. The coherent superposition of these local plasmon waves to form an extended surface plasmon wave propagating to an adjacent hole array is observed directly. The near-field results are consistent with the results obtained from far-field extraordinary transmission measurements. PACS 42.25.Bs; 42.25.Hz; 42.25.Ja; 42.25.Kb; 07.79.Fc  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号