首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The strain energy density factor S was first proposed by Sih for the prediction of the critical of the load and failure direction under monotonic, mixed mode loading condition. It seems a natural extension to apply the same concept to fatigue crack propagation. However, a close examination of the existing theory indicates that the Strain Energy Density Factor cannot logically account for the phenomena of the R-ratio effect and crack arrest. Thus, modification is necessary before the concept can be applied successfully for the prediction of mixed mode fatigue crack propagation.Based on the concept of hysteresis energy dissipation, an effective strain energy density factor range, ΔSp,eff, is proposed for the correlation of fatigue crack growth data. ΔSp,eff is consistent with the concept of crack closure. Experimental investigation indicates that it could predict the crack growth rates and trajectories.  相似文献   

2.
In this paper, the incremental theory of plasticity is used in conjunction with the strain energy density criterion to determine the stress field in 4-in. wide test specimens containing 3 holes. These specimens, made from 0.04-in. thick sheets of 2024-T3 aluminum, also contained small collinear cracks emanating from the holes. The initial crack sizes varied from 0.15 to 0.26 in. Residual strength tests conducted with these specimens revealed that stable tearing occurred before failure. Analyses were performed to predict the stable crack extension and failure by plastic collapsed. Because of the complexities involved with nonlinear stress analysis combined with subcritical crack extension, the finite element method was used with the grid pattern adjusted for each increment of stable tearing. Reasonable correlation between the experimental data and predicted results was achieved.  相似文献   

3.
In this paper, the S-theory is applied to determine crack initiation and direction for cracked T-beams and circumferentially cracked pipes. It makes use of a parameter called strain energy density factor, S, which is a function of the stress intensity factors. The strain energy density theory provides a more general treatment of fracture mechanics problems by virtue of its ability in describing the multiscale feature of material damage and in dealing with mixed mode crack propagation problem. A simple method for obtaining approximate stress intensity factors is also applied. It takes into account the elastic crack tip stress singularity while using the elementary beam theory. Some basic loading conditions in beams and pipes are studied.  相似文献   

4.
5.
The multiaxiality factor defined as the ratio of the von-Misses equivalent stress to the volumetric stress has been reported to be related to the initiation and progression of failure in structures. It is demonstrated in the present paper that the location around the crack tip where the multiaxiality factor obtains minimum value is an indicator of the direction of minimum material fracture resistance for crack propagation. It is also proposed that the location along the direction of crack propagation path where multiaxiality factor obtains minimum value is considered as the critical distance away from the crack tip, where the strain energy density should be evaluated and compared to its critical value. Theoretical predictions correlate well with the test results for the investigated cases.  相似文献   

6.
基于紧凑拉伸剪切结构的复合型疲劳裂纹扩展研究   总被引:1,自引:0,他引:1  
针对含I-II型复合裂纹的紧凑拉伸剪切(CTS)试样,研究了不同加载角度下的裂纹扩展路径及裂纹扩展寿命,通过实验数据给出了适宜于CTS试样的等效应力强度因子关系式,并基于此提出了一种新的I-II型复合裂纹扩展模型。研究表明,CTS试样的裂纹沿与加载方向近垂直的方向扩展,基于Tanaka公式的等效应力强度因子更适合于本文CTS试件的裂纹扩展寿命评估。当加载角度处于0°~45°之间时,提出的复合型裂纹扩展模型预测误差控制在5.49%之内,验证了分析模型的可行性和准确性。  相似文献   

7.
Dynamic extension of Sih's fracture criterion based on strain energy density factor, rc (dW/dV), is used to analyze dynamic crack propagation and branching. Influence of the nonsingular components, which are known as the higher order terms (HOT) in the crack tip stress field, on the strain energy density distribution at a critical distance surrounding the crack tip moving at constant crack velocity is examined. This rc (dW/dV) fracture criterion is then used to analyze available dynamic photoelastic results of crack branching and of engineering materials.  相似文献   

8.
The effect of weld size on fatigue crack growth behaviour of cruciform joints containing lack of penetration defect has been analysed by using the strain energy density factor concept. Load carrying cruciform joints were fabricated from ASTM 517‘F' grade steel. Fatigue crack growth experiments were carried out in a mechanical resonance vertical pulsator (SCHENCK 200 kN capacity) with a frequency of 30 Hz under constant amplitude loading (R=0). It was found that the crack growth rates were relatively lower in the larger welds fabricated by multipass welding technique than the smaller welds fabricated by the single pass welding technique.  相似文献   

9.
When a fatigue crack is nucleated and propagates into the vicinity of the notch, the crack growth rate is generally higher than that can be expected by using the stress intensity factor concept. The current study attempted to describe the crack growth at notches quantitatively with a detailed consideration of the cyclic plasticity of the material. An elastic–plastic finite element analysis was conducted to obtain the stress and strain histories of the notched component. A single multiaxial fatigue criterion was used to determine the crack initiation from the notch and the subsequent crack growth. Round compact specimens made of 1070 steel were subjected to Mode I cyclic loading with different R-ratios at room temperature. The approach developed was able to quantitatively capture the crack growth behavior near the notch. When the R-ratio was positive, the crack growth near a notch was mainly influenced by the plasticity created by the notch and the resulted fatigue damage during crack initiation. When the R-ratio was negative, the contact of the cracked surfaces during a part of a loading cycle reduced the cyclic plasticity of the material near the crack tip. The combined effect of notch plasticity and possible contact of cracked surface were responsible for the observed crack growth phenomenon near a notch.  相似文献   

10.
Predicting potential risks associated with the fatigue of key structural components is crucial in engineering design.However,fatigue often involves entangled complexities of material microstructures and service conditions,making diagnosis and prognosis of fatigue damage challenging.We report a statistical learning framework to predict the growth of fatigue cracks and the life-to-failure of the components under loading conditions with uncertainties.Digital libraries of fatigue crack patterns and ...  相似文献   

11.
An advanced incremental crack growth algorithm for the three-dimensional (3D) simulation of fatigue crack growth in complex 3D structures with linear elastic material behavior is presented. To perform the crack growth simulation as effectively as possible an accurate stress analysis is done by the boundary-element method (BEM) in terms of the 3D dual BEM. The question concerning a reliable 3D crack growth criterion is answered based on experimental observations. All criteria under consideration are numerically realized by a predictor–corrector procedure. The agreement between numerically determined and experimentally observed crack fronts will be shown on both fracture specimens and an industrial application.  相似文献   

12.
This work is concerned with subcritical crack growth in rail-end bolt hole caused by fatigue. Included in the analysis are the mechanical wheel loads and thermal fluctuations experienced by the rail. The interaction of cyclic loading with the rail geometry is considered to be essential. Finite element stress analysis is coupled with the strain energy density criterion for determining the subcritical crack growth steps. The crack can grow and follow any arbitrary surface in the three-dimensional space depending on the symmetry or antisymmetry conditions of the load and geometry. Results on crack shapes and growth rates compare favorably with those observed experimentally.  相似文献   

13.
Successful simulation of kinetics of small fatigue crack growth entails three aspects: Stage I, Stage II growth rate prediction and transition prediction. In this paper attention is focused on growth rate predictions. By using microstructurally-affected-zone and process zone concepts, microscopic fatigue behaviour of small fatigue crack propagation is logically linked with macroscopic fatigue behaviour, showing an intrinsic relation between small fatigue crack growth and macroscopic low-cycle fatigue properties during crack growth. Furthermore, variation of relatively big plastic zone size associated with a growing small fatigue crack is kinetically simulated. As a result a quantitative prediction model of growth rates for Stage I and Stage II growth has been developed whose explicit advantage is that the growth rate of small fatigue crack can now be predicted in terms of bulk fatigue properties in conjunction with local microstructural characteristics.  相似文献   

14.
以Donahue等提出的疲劳裂纹扩展速率计算模型为基础,通过引入形状系数、张开比和残余应力等参数,建立了适用于焊接结构的疲劳裂纹扩展速率计算模型,分析了多种因素对焊接结构疲劳裂纹扩展速率的影响规律。结果表明,焊板厚度和焊缝余高的变化均会对焊接结构疲劳裂纹的扩展速率产生影响,在对焊接结构表面形状进行设计时应保有一定的焊缝余高;有效应力比的增大会降低焊接结构疲劳裂纹的扩展速率,且裂纹深度的变化不会改变有效应力比对焊接结构疲劳裂纹扩展速率的影响;残余应力的增大会提高焊接结构疲劳裂纹的扩展速率,且残余应力对疲劳裂纹扩展速率的促进作用随着裂纹深度的增加而增大,在对焊接结构的疲劳性能进行设计时须考虑残余应力对结构性能的影响。  相似文献   

15.
A model for crack growth is proposed based on studies of the variation in the curvature radius at the crack tip during cyclic loading. Relations are obtained between mechanical material characteristics, crack geometry, and the rate of crack growth in a structure under cyclic loading. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 50, No. 4, pp. 167–175, July–August, 2009.  相似文献   

16.
Small defects or cracks near the surface of roller contact could spread and lead to failure at large. Their growth behavior depends on the rolling load, size and orientation of the initial defects, and material property in addition to friction at the contacting surfaces. Stress intensity factors K1and K2 are obtained for three different crack types near the surface between the roller and contacting solid. Various possible directions of crack growth initiation are obtained as the different roller loads are moved relative to the crack. The results are indicative of railway failure observed in service and are helpful to future studies on subcritical and/or critical crack growth.  相似文献   

17.
Electric-field-induced fatigue crack growth in pre-cracked PZT ferroelectric ceramics is experimentally investigated in this work. It is found that the crack open and close under an alternating electric field is a major mechanism of crack propagation. The experimental results also show that the frequency, waveform, as well as the amplitude ratio, of the electric loading, play important roles in electric-field-induced fatigue cracking. Empirical formulations of fatigue crack propagation rates are obtained based on the experimental results. It is revealed that the crack grows at a nearly constant rate when the loading frequency is below 100 Hz. However, with the increase of the loading frequency over 125 Hz, the crack propagation rate diminishes rapidly.  相似文献   

18.
Interaction of multiple cracks are found in mud when drying and crazing, thin film varnishes or coatings of aeroengine turbine blades. A two-dimensional multiple crack interaction model is developed to simulate the growth of interacting parallel surface cracks. Density and the initial distribution of the microcracks are accounted for in analyzing the growth of a crack to a pre-determined length. Analytical predictions are discussed with reference to experimental observations of fatigue cracks on coated turbine blades. Introduction of a large density of similar cracks can enhance the fatigue life of structural components.  相似文献   

19.
20.
Results are given in terms of crack growth area and tonnage of train load. A three-dimensional finite element procedure is developed for analyzing multiple-mode transverse fatigue crack growth in a rail section. Stress and failure analysis are performed for each increment of non-self-similar crack growth up to the point of global instability that is assumed to be governed by the fracture toughness of the rail steel. The strain energy density criterion is adopted to predict the crack profiles developed from a two-stage fatigue loading cycle where both Mode I and III crack extension are present. Use is made of the material data obtained from the past and present TSC programs for predicting the remaining life of a 132 lb/ft rail head with an initial transverse circular crack of 0.50 in. in diameter. The number of cycles to failure are estimated for four different vertical load and initial crack positions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号