首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The absorption and fluorescence spectra, fluorescence quantum yields, lifetimes and time-resolved fluorescence spectra are reported for nine different fluorescent DNA-dyes. The work was initiated in search of a quantitative method to detect the ratio of single-to-double stranded DNA (ssDNA/dsDNA) in solution based on the photophysics of dye-DNA complexes; the result is a comprehensive study providing a vast amount of information for users of DNA strains. The dyes examined were the bisbenzimide or indole-derived stains (Hoechst 33342, Hoechst 33258 and 4',6-diamidino-2-phenylindole), phenanthridinium stains (ethidium bromide and propidium iodide) and cyanine dyes (PicoGreen, YOYO-1 iodide, SYBR Green I and SYBR Gold). All were evaluated under the same experimental conditions in terms of ionic strength, pH and dye-DNA ratio. Among the photophysical properties evaluated only fluorescence lifetimes for the cyanine stilbene dyes allowed a convenient differentiation between ssDNA and dsDNA. The bisbenzimide dyes showed multiexponential decays when bound to either form of DNA, making lifetime-based analysis cumbersome with inherent errors. These dyes also presented biexponential decay when free in aqueous buffered solutions at different pH. A mechanism for their deactivation is proposed based on two different conformers decaying with different kinetics. The phenanthridinium dyes showed monoexponential decays with ssDNA and dsDNA, but there was no discrimination between them. High dye-DNA ratios (e.g. 1:1) resulted in multiexponential decays for cyanine dyes, resulting from energy transfer or self-quenching deactivation. Shifts in both absorption and fluorescence maxima for both ssDNA and dsDNA DNA-cyanine dye complexes were small. Broadening of dye-ssDNA absorption and fluorescence bands for the cyanine dyes relative to dye-dsDNA bands was detected and attributed to higher degrees of rotational freedom in the former.  相似文献   

2.
The photophysical and biological properties of two new phenanthroline-based ligand ruthenium complexes were investigated in detail. Their DNA interaction modes were determined to be the intercalation mode using spectra titration and viscosity measurements. Under irradiation, obvious photo-reduced DNA cleavages were observed in the two complexes via singlet oxygen generation. Furthermore, complex 2 showed higher DNA affinity, photocleavage activity, and singlet oxygen quantum yields than complex 1. The two complexes showed no toxicity towards tumor cells (HeLa, A549, and A375) in the dark. However, obvious photocytotoxicities were observed in the two complexes. Complex 2 exhibited large PIs (phototherapeutic indices) (ca. 400) towards HeLa cells. The study suggests that these complexes may act as DNA intercalators, DNA photocleavers, and photocytotoxic agents.  相似文献   

3.
Abstract— We describe the synthesis and photophysical studies, including measurements of quantum yields of triplet excited states and singlet oxygen generation of bis(3,5-dibromo-2,4,6-trihydroxyphenyl)squaraine (2) and bis(3,5-diiodo-2,4,6-trihydroxyphenyl)squaraine (3). These dyes exist in solution in the protonated, neutral, single and double depro-tonated forms, depending on pH. The pKa values of these dyes were found to be relatively lower than those of the parent bis(2,4,6-trihydroxyphenyl)squaraine (1). Only the single deprotonated forms (Sq) of 2 and 3 showed measurable fluorescence. In microheterogeneous media such as in the presence of β-cyclodextrin, cetyltrunethylammonium bromide and polyvinylpyrrolidone), bathochromic shifts in the absorption and emission spectra of Sq were observed with a substantial enhancement in their fluorescence yields. Triplet excited states are the main transient intermediates obtained upon 532 nm laser excitation of the various forms of 2 and 3 in methanol. These triplets have lifetimes in the range from 0.061 to 132 μs. The triplet quantum yields of double deprotonated forms are low (φT = <0.01), whereas the neutral and Sq?forms of 2 (φr = 0.12 and 0.22) and 3 (φT= 0.24 and 0.5), respectively, exhibited significant triplet yields. Quantum yields of singlet oxygen generation by Sq?forms of 2 and 3 were determined in methanol and were found to be 0.13 and 0.47, respectively, which are in good agreement with the triplet yields obtained in these systems.  相似文献   

4.
We report the synthesis, crystallographic, optical, and triplet and singlet oxygen generation properties of a series of BF2‐rigidified partially closed chain bromotetrapyrroles as near infrared emitters and photosensitizers. These novel dyes were efficiently synthesized from a nucleophilic substitution reaction between pyrroles and the 3,5‐bromo‐substituents on the tetra‐ and hexabromoBODIPYs and absorb in the near‐infrared region (681–754 nm) with high molar extinction coefficients. Their fluorescent emission (708–818 nm) and singlet oxygen generation properties are significantly affected by alkyl substitutions on the two uncoordinated pyrrole units of these dyes and the polarity of solvents. Among them, dyes 4 ca and 4 da show good singlet oxygen generation efficiency and good NIR fluorescence emission (fluorescence quantum yields of 0.14–0.43 in different solvents studied).  相似文献   

5.
A new series of aza‐BODIPY derivatives ( 4 a – 4 c , 5 a , c , and 6 b , c ) were synthesized and their excited‐state properties, such as their triplet excited state and the yield of singlet‐oxygen generation, were tuned by substituting with heavy atoms, such as bromine and iodine. The effect of substitution has been studied in detail by varying the position of halogenation. The core‐substituted dyes showed high yields of the triplet excited state and high efficiencies of singlet‐oxygen generation when compared to the peripheral‐substituted systems. The dye 6 c , which was substituted with six iodine atoms on the core and peripheral phenyl ring, showed the highest quantum yields of the triplet excited state (ΦT=0.86) and of the efficiency of singlet‐oxygen generation (ΦΔ=0.80). Interestingly, these dyes were highly efficient as photooxygenation catalysts under artificial light, as well as under normal sunlight conditions. The uniqueness of these aza‐BODIPY systems is that they are stable under irradiation conditions, possess strong red‐light absorption (620–680 nm), exhibit high yields of singlet‐oxygen generation, and act as efficient and sustainable catalysts for photooxygenation reactions.  相似文献   

6.
Here, we report the synthesis, photophysical properties and photodynamic effects in DLA live cells of three water soluble squaraine dyes, viz. bisbenzothiazolium squaraine dyes SQMI and SQDI with iodine in one and both benzothiazolium units, respectively, and an unsymmetrical squaraine dye ASQI containing iodinated benzothiazolium and aniline substituents. The diiodinated SQDI showed an anomalous trend in both fluorescence and triplet quantum yields over the monoiodinated SQMI, with SQDI showing higher fluorescence and lower triplet quantum yields compared to SQMI. Nanosecond laser flash photolysis of SQDI and SQMI indicated the formation of triplet excited states with quantum yield of 0.19 and 0.26, respectively. On photoirradiation, both the SQDI and SQMI generate singlet oxygen and it was observed that both dyes undergoing oxidation reactions with the singlet oxygen generated. ASQI which exhibited a lower triplet quantum yield of 0.06 was, however, stable and did not react with the singlet oxygen generated. In vitro cytotoxicity studies of these dyes in DLA live cells were performed using Trypan blue dye exclusion method and it reflect an order of cytotoxicity of SQDI>SQMI>ASQI. Intracellular generation of the ROS was confirmed by dichlorofluorescein assay after the in vitro PDT.  相似文献   

7.
Singlet oxygen generation ability of squarylium cyanine dyes   总被引:1,自引:0,他引:1  
The quantum yields for singlet oxygen generation of several squarylium cyanine dyes derived from benzothiazole, benzoselenazole and quinoline, displaying absorption within the so-called “phototherapeutic window” (600–1000 nm), were determined, envisioning their potential usefulness for photodynamic therapy (PDT). The determination was performed by a direct method measuring the luminescence decay of the dyes in the near infrared. Considering the absorption and the quantum yields displayed by some of the dyes, these seemed to be potential candidates as sensitizers for PDT.  相似文献   

8.
Thionine ( 1 ) has been covalently bound to linear copoly(styrene-p-vinylbenzyl chloride) and to linear copoly(acrylic acid-2-ethylhexyl acrylate). The resulting polymeric dyes, purified by ultrafiltration, present quantum yields of singlet oxygen generation in dimethylformamide solution lower than their corresponding low-molecular-weight models thionine hydrochloride ( 1.HCl ) and N(3)-acetylthionine ( Ac-1 ), the decrease being more pronounced in the case of the polystyrene-dye photosensitizer. High chromophore concentrations within the volume encompassed by each macromolecule in the solution can explain this fall in efficiency. The free dyes thionine hydrochloride and its hydrolysis products thionoline ( 2 ) and thionol ( 3 ) behave as good singlet oxygen generators, with quantum yields of 0.71, 0.62, and 0.63, respectively. © 1993 John Wiley & Sons, Inc.  相似文献   

9.
The synthesis, photophysical and photochemical properties of the tetra-substituted aryloxy gallium(III) and indium(III) phthalocyanines are reported for the first time. General trends are described for photodegradation, singlet oxygen, fluorescence, and triplet quantum yields and triplet lifetimes of these compounds. The introduction of phenoxy and tert-butylphenoxy substituents on the ring resulted in lowering of fluorescence quantum yields and lifetimes, and triplet quantum yields, and an increase of kIC, kISC, and kF. Photoreduction of the complexes was observed during laser flash photolysis. The singlet oxygen quantum yields (ΦΔ), which give an indication of the potential of the complexes as photosensitizers in applications where singlet oxygen is required (Type II mechanism) ranged from 0.41 to 0.91. Thus, these complexes show potential as Type II photosensitizers.  相似文献   

10.
Binary mixtures of dispersed dyes, which during irradiation with polychromatic light give an effect of accelerated decolorization, were studied. Quantum yields of the formation of singlet oxygen by individual dyes were estimated during irradiation of solutions in ethyl acetate with light of 435 and 546 nm as well as quantum yields of the reaction of dyes with singlet oxygen. It was found that the contribution of the reaction of dyes with singlet oxygen to the effects of accelerated decolorization were vanishingly small. The quantum yield of the photodestruction of dyes in a mixture was 10–3-10–5 and the quantum yield of reaction with singlet oxygen was less than 10–6. It was concluded that accelerated decolorization of the systems studied is not determined by reaction with singlet oxygen.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 9, pp. 2014–2017, September, 1991.  相似文献   

11.
The synthesis, photophysical and photochemical properties of the tetra- and octa-[4-(benzyloxyphenoxy)] substituted gallium(III) and indium(III) phthalocyanines are reported for the first time. The new compounds have been characterized by elemental analysis, IR, 1H NMR spectroscopy and electronic spectroscopy. General trends are described for quantum yields of photodegredation, fluorescence quantum yields and lifetimes, triplet lifetimes and triplet quantum yields as well as singlet oxygen quantum yields of these compounds in dimethylsulfoxide (DMSO). Substituted indium phthalocyanine complexes (7b9b) showed much higher quantum yields of triplet state and shorter triplet lifetimes, compared to the substituted GaPc derivatives due to enhanced intersystem crossing (ISC) in the former. The gallium and indium phthalocyanine complexes showed phototransformation during laser irradiation due to ring reduction. The singlet oxygen quantum yields (ΦΔ), which give an indication of the potential of the complexes as photosensitizers in applications where singlet oxygen is required (Type II mechanism) ranged from 0.51 to 0.94. Thus, these complexes show potential as photodynamic therapy of cancer.  相似文献   

12.
The synthesis, photophysical and photochemical properties of the tetra- and octa-poly(oxyethylene)substituted zinc (II) phthalocyanines are reported for the first time. The new compounds have been characterized by elemental analysis, IR, 1H and 13C NMR spectroscopy, electronic spectroscopy and mass spectra. General trends are described for photodegradation, singlet oxygen, triplet state and fluorescence quantum yields, and triplet and fluorescence lifetimes of these compounds in dimethylsulfoxide (DMSO). Photophysical and photochemical properties of phthalocyanine complexes are very useful for PDT applications. The effects of the substituents on the photophysical and photochemical parameters of the zinc(II) phthalocyanines (3a, 5a and 6a) are also reported. The singlet oxygen quantum yields (Phi(Delta)), which give an indication of the potential of the complexes as photosensitizers in applications where singlet oxygen is required (Type II mechanism) ranged from 0.60 to 0.72. Thus, these complexes show potential as Type II photosensitizers. The fluorescence of the complexes was quenched by benzoquinone (BQ).  相似文献   

13.
The spectral properties of new fluorene-based photosensitizers for efficient singlet oxygen production are investigated at room temperature and 77 K. Two-photon absorption (2PA) cross-sections of the fluorene derivatives are measured by the open aperture Z-scan method. The quantum yields of singlet oxygen generation under one- and two-photon excitation (phi(delta) and 2PAphi(delta), respectively), are determined by the direct measurement of singlet oxygen luminescence at approximately 1270 nm. The values of phi(delta) are independent of excitation wavelength, ranging from 0.6-0.9. The singlet oxygen quantum yields under two-photon excitation are 2PAphi(delta) approximately 1/2 phi(delta), indicating that the two processes exhibit the same mechanism of singlet oxygen production, independent of the mechanism of photon absorption.  相似文献   

14.
While cyclometalated complexes have been extensively studied for optoelectronic applications, these compounds also represent a relatively new class of photosensitizers for the production of singlet oxygen. Thus far, singlet oxygen generation from cyclometalated Ir and Pt complexes has been studied in detail. In this review, photophysical data for singlet oxygen generation from these complexes are presented, and the mechanism of 1O2 generation is discussed, including evidence for singlet oxygen generation via an electron‐transfer mechanism for some of cyclometalated Ir complexes. The period from the first report of singlet oxygen generation by a cyclometalated Ir complex in 2002 through August 2013 is covered in this review. This new class of singlet oxygen photosensitizers may prove to be rather versatile due to the ease of substitution of ancillary ligands without loss of activity. Several cyclometalated complexes have been tethered to zeolites, polystyrene, or quantum dots. Applications for photooxygenation of organic molecules, including “traditional” singlet oxygen reactions (ene reaction, [4 + 2] and [2 + 2] cycloadditions) as well as oxidative coupling of amines are presented. Potential biomedical applications are also reviewed.  相似文献   

15.
Abstract— The synthesis of some bromine-substituted rhodamine derivatives viz. , 4,5-dibromorhodamine methyl ester (dye 2) and 4,5-dibromorhodamine n -butyl ester (dye 3) are reported. These dyes were synthesized to promote a more efficient cancer cell photosensitizer for potential use in in vitro bone marrow purging in preparation for autologous bone marrow transplantation. Spectroscopic and photo-physical characterization of these dyes together with rhodamine 123 (dye 1) are reported in water, methanol, eth-anol and also in a microheterogeneous system, sodium dodecyl sulfate. The possible mechanism of photosensi-tization is characterized in terms of singlet oxygen efficiency of these dyes. Singlet oxygen quantum yields for bromine-substituted dyes are in the range of 0.3-0.5 depending on the solvent. For dye 1 no singlet oxygen production is found. The photodynamic actions of these dyes in different cell lines are tested. It was found that dye 2 and dye 3 are efficient photosensitizers and mediate eradication of K562, EM2, myeloid cell lines (CML) and the SMF-AI rhabdomyosarcoma line.  相似文献   

16.
Using the flash photolysis method, the spectral and kinetic characteristics of triplet states of a number of meso-substituted thiacarbocyanine dyes (3,3′-diethyl-9-methoxythiacarbocyanine iodide, 3,3′,9-triethylthiacarbocyanine iodide, 3,3′-diethyl-9-methylthiacarbocyanine iodide, and 3,3′-diethyl-9-thiomethylthiacarbocyanine iodide) were studied, and the rate constants of triplet quenching by a stable nitroxyl radical, iodide ion, and oxygen were determined in solutions and in complexes with DNA. The results obtained show the formation of two types of dye-DNA complexes: formed by binding of the dye in the groove of a DNA molecule and by intercalation of the dye between base pairs. The complexation creates steric hindrances upon quenching of the triplet states of the ligands and causes great differences between the rate constants of the quenching processes.  相似文献   

17.
Studies on the synthesis, singlet oxygen and fluorescence yields and pharmacokinetic properties of three different dimeric porphyrins with an amide linkage (D2-D4) are described and compared with the results recently reported for a dimeric porphyrin (D1). The pharmacokinetic behavior of all dimers were examined in Balb/c mice bearing MS-2 fibrosarcomas. The maximal efficiency and selectivity of photosensitizer accumulation in each tumor tissue takes place at 24 h after drug administration of 1.0 mg kg-1 into DL-alpha-dipalmitoylphosphatidylcholine liposomes by intravenous injection. Since the dimeric porphyrins exhibit high quantum yields of singlet oxygen generation, long triplet lifetimes and high photostability, the results obtained suggest that the evaluated dimeric structures may be promising candidates for further use in PDT experiments. The results also allow the possibility to establish a correlation between the chemical structure of the dyes and the efficiency/selectivity of the tumor accumulation and can be used for building up optimal photosensitizing agents for tumors.  相似文献   

18.
Glutathione-capped graphene quantum dots (GQDs@GSH) were covalently linked to folic acid (FA). Aluminum tetrasulfonated phthalocyanine (ClAlTSPc) was then adsorbed on the GQDs@GSH-FA conjugate to form GQDs@GSH-FA/ClAlTSPc or on GQDs@GSH and pristine GQDs alone to form GQDs@GSH/ClAlTSPc and GQDs/ClAlTSPc, respectively. We report for the first time on the photophysicochemical behavior of the resulting nanoconjugates. The fluorescence quantum yields of pristine GQDs, GQDS@GSH, or GQDs@GSH-FA conjugate were quenched upon non-covalent interaction (ππ) with ClAlTSPc. There was an increase in triplet quantum yields from 0.38 for ClAlTSPc alone to 0.60, 0.75, and 0.73 when ClAlTSPc was linked to pristine GQDs, GQDs@GSH, and GQDs@GSH-FA, respectively. The singlet oxygen quantum yields also increased from 0.37 for ClAlTSPc alone to 0.42 (for ClALTSPc with pristine GQDs), 0.52 (for ClAlTSPc with GQDs@GSH), and 0.54 (for ClAlTSPc with GQDs@GSH-FA). Thus, the present work may lead to a new generation of carbon-based nanomaterial photodynamic therapy agents with overall performance superior to conventional agents in terms of singlet oxygen generation, water dispersibility, and biocompatibility.  相似文献   

19.
The facile synthesis of Group 9 RhIII porphyrin‐aza‐BODIPY conjugates that are linked through an orthogonal Rh?C(aryl) bond is reported. The conjugates combine the advantages of the near‐IR (NIR) absorption and intense fluorescence of aza‐BODIPY dyes with the long‐lived triplet states of transition metal rhodium porphyrins. Only one emission peak centered at about 720 nm is observed, irrespective of the excitation wavelength, demonstrating that the conjugates act as unique molecules rather than as dyads. The generation of a locally excited (LE) state with intramolecular charge‐transfer (ICT) character has been demonstrated by solvatochromic effects in the photophysical properties, singlet oxygen quantum yields in polar solvents, and by the results of density functional theory (DFT) calculations. In nonpolar solvents, the RhIII conjugates exhibit strong aza‐BODIPY‐centered fluorescence at around 720 nm (ΦF=17–34 %), and negligible singlet oxygen generation. In polar solvents, enhancements of the singlet‐oxygen quantum yield (ΦΔ=19–27 %, λex=690 nm) have been observed. Nanosecond pulsed time‐resolved absorption spectroscopy confirms that relatively long‐lived triplet excited states are formed. The synthetic methodology outlined herein provides a useful strategy for the assembly of functional materials that are highly desirable for a wide range of applications in material science and biomedical fields.  相似文献   

20.
The photophysical properties of 3,3′-dialkylthiacarbocyanine iodides and chlorides were measured in various solvents. It was found that photoisomerization and fluorescence are the major contributors to the deactivation of the excited singlet state; intersystem crossing occurs with only a very low efficiency. In ethanol, a triplet yield of 0.004 and a singlet oxygen quantum yield of 0.002 were determined. The photophysical parameters of these dyes are not substantially influenced by the length of the alkyl chain or the size of the halide counterion. The substitution of an ethyl with an octadecyl-chain only slightly hinders photoisomerization, and the replacement of the chloride with an iodide reduces only marginally the fluorescence lifetimes and fluorescence quantum yields in chloroform. A significant external heavy-atom effect is observed using dibromoethane as a solvent: triplet and singlet oxygen yields increase7–10-fold, and the triplet lifetime decreases from 55 μs to 15 mUs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号