首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the growth of high quality and crack-free GaN film on Si (111) substrate using Al0.2Ga0.8N/AlN stacked interlayers. Compared with the previously used single AlN interlayer, the AlGaN/AlN stacked interlayers can more effectively reduce the tensile stress inside the GaN layer. The cross-sectional TEM image reveals the bending and annihilation of threading dislocations (TDs) in the overgrown GaN film which leads to a decrease of TD density.  相似文献   

2.
We use complementary analysis techniques to determine the structure of nanometric periodic multilayers and particularly their interfaces. We focus on Co-based multilayer which can be used as efficient optical component in the extreme ultraviolet (EUV) range. The samples are characterized using reflectivity measurements in order to determine the thickness and roughness of the various layers, X-ray emission and nuclear magnetic resonance (NMR) spectroscopies to identify the chemical state of the atoms present within the stack and know if they interdiffuse. Results are validated through the use of destructive techniques such as transmission electron microscopy or secondary ion mass spectrometry.  相似文献   

3.
Si C monocrystal substrates are implanted by Pd ions with different ion-beam energies and fluences,and the effects of Pd ion implantation on wettability of Si/Si C and Al–12 Si/Si C systems are investigated by the sessile drop technique.The decreases of contact angles of the two systems are disclosed after the ion implantation,which can be attributed to the increase of surface energy(σ_(SV)) of Si C substrate derived from high concentration of defects induced by the ionimplantation and to the decrease of solid–liquid surface energy(σ_(SL)) resulting from the increasing interfacial interactions.This study can provide guidance in improving the wettability of metals on Si C and the electronic packaging process of Si C substrate.  相似文献   

4.
Advanced GGA + U(Hubbard) and modified Becke–Johnson(mBJ) techniques are used for the calculation of the structural, electronic, and optical parameters of α-Al2-x CoxO3(x = 0.0, 0.167) compounds. The direct band gaps calculated by GGA and m BJ for pure alumina are 6.3 eV and 8.5 eV, respectively. The m BJ approximation provides results very close to the experimental one(8.7 eV). The substitution of Al with Co reduces the band gap of alumina. The wide and direct band gap of the doped alumina predicts that it can efficiently be used in optoelectronic devices. The optical properties of the compounds like dielectric functions and energy loss function are also calculated. The rhombohedral structure of theα-Al2-x CoxO3(x = 0.0, 0.167) compounds reveal the birefringence properties.  相似文献   

5.
Undoped and copper doped zinc oxide (ZnO) thin films have been prepared on glass substrates by spray pyrolysis technique. The films were doped with copper using the direct method by addition of a copper salt (CuCl2) in the spray solution of ZnO. Variation of structural, electrical, optical and thermoluminescence (TL) properties with doping concentrations is investigated in detail.  相似文献   

6.
Influences of the Si doping on the structural and optical properties of the InGaN epilayers are investigated in detail by means of high-resolution X-ray diffraction (HRXRD), photolumimescence (PL), scanning electron microscope (SEM), and atomic force microscopy (AFM). It is found that the Si doping may improve the surface morphology and crystal quality of the InGaN film and meanwhile it can also enhance the emission efficiency by increasing the electron concentration in the InGaN and suppressing tile formation of V-defects, which act as nonradiative recombination centers in the InGaN, and it is proposed that the former plays a more important role in enhancing the emission efficiency in the InGaN.  相似文献   

7.
肖绪洋 《中国物理 B》2012,21(4):46102-046102
The synergy effect of alloy elements in bimetallic clusters can be used to tune the chemical and physical properties. Research on the influences of alloy concentration and distribution on the frozen structure of bimetallic clusters plays a key rolc in exploring new structural materials. In this paper, we study the influence of Ag concentration on the frozen structure of the (AgCo)561 cluster by using molecular dynamics simulation with a general embedded atom method. The results indicate that tt~e structure and chemical ordering of the (AgCo)561 cluster are strongly related to Ag concentration. Hcp-icosahedron structural transformation in the frozen (CoAg)561 cluster can be induced by changing Ag concentration. The chemical ordering also transforms to Janus-like Co Ag from core-shell Co-Ag.  相似文献   

8.
This study investigates the effect of magnetic nanoparticles(NPs) on the weakly polar nematic liquid crystal(NLC).Different parameters of dielectric data were measured for both the homeotropic and planar aligned samples as a function of frequency and temperature and the substantial changes have been noticed for the doped systems. Dielectric permittivity has been increased after the dispersion of magnetic NPs in the pure NLC. Dielectric anisotropy has also been influenced by incorporating the magnetic NPs with the NLC molecules. These results were attributed to the dipole–dipole interaction between the magnetic nanoparticles and nematic liquid crystal molecules. Electro-optical study indicated the faster rise time and fall time of the doped systems as compare to pure NLC. Threshold voltage has been calculated and found to be decreased for the doped systems. Moreover, we have also calculated the rotational viscosity and the splay elastic constant for pure and the doped systems. Both the rotational viscosity and splay elastic constant of the doped systems are found to be considerably lower than those of pure NLC. Change in these properties has been explained on the basis of molecular disturbances created by the interaction between the magnetic nanoparticle and LC director. This study reveals that the inclusion of magnetic NPs in weakly polar NLC can be useful to enhance the basic properties of the weakly polar NLC and make it a promising material for many display applications.  相似文献   

9.
张秀荣  杨星  丁迅雷 《中国物理 B》2012,21(9):93601-093601
The structural, electronic, and magnetic properties of transition metal doped platinum clusters MPt6 (M=Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn) are systematically studied by using the relativistic all-electron density functional theory with the generalized gradient approximation. Most of the doped clusters show larger binding energies than the pure Pt7 cluster, which indicates that the doping of the transition metal atom can stabilize the pure platinum cluster. The results of the highest occupied molecular orbital (HOMO) lowest unoccupied molecular orbital (LUMO) gaps suggest that the doped clusters can have higher chemical activities than the pure Pt7 cluster. The magnetism calculations demonstrate that the variation range of the magnetic moments of the MPt6 clusters is from 0 μB to 7 μB, revealing that the MPt6 clusters have potential utility in designing new spintronic nanomaterials with tunable magnetic properties.  相似文献   

10.
Chemical and field-effect passivation of atomic layer deposition (ALD) Al2O3 films are investigated, mainly by corona charging measurement. The interface structure and material properties are characterized by transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS), respectively. Passivation performance is improved remarkably by annealing at temperatures of 450 ℃ and 500 ℃, while the improvement is quite weak at 600 ℃, which can be attributed to the poor quality of chemical passivation. An increase of fixed negative charge density in the films during annealing can be explained by the Al2O3/Si interface structural change. The Al–OH groups play an important role in chemical passivation, and the Al–OH concentration in an as-deposited film subsequently determines the passivation quality of that film when it is annealed, to a certain degree.  相似文献   

11.
The electronic and optical properties of zincblende ZnX(X=S, Se, Te) and ZnX:Co are studied from density functional theory (DFT) based first principles calculations. The local crystal structure changes around the Co atoms in the lattice are studied after Co atoms are doped. It is shown that the Co-doped materials have smaller lattice constant (about 0.6%-0.9%). This is mainly due to the shortened Co-X bond length. The (partial) density of states (DOS) is calculated and differences between the pure and doped materials are studied. Results show that for the Co-doped materials, the valence bands are moving upward due to the existence of Co 3d electron states while the conductance bands are moving downward due to the reduced lattice constants. This results in the narrowed band gap of the doped materials. The complex dielectric indices and the absorption coefficients are calculated to examine the influences of the Co atoms on the optical properties. Results show that for the Co-doped materials, the absorption peaks in the high wavelength region are not as sharp and distinct as the undoped materials, and the absorption ranges are extended to even higher wavelength region.  相似文献   

12.
The microstructure and magnetic behaviors of the Fe-Nd-Al-B alloys prepared by suction casting with zirconium addition are investigated. With the small amount of zirconium addition, the magnetic properties of the alloys change from hard magnetic property to soft magnetic property. The proper addition of Zr (6%) not only improves the glass forming ability, but also suppresses the crystallization. From the scanning electron microscopy of the [(Fe0.53Nd0.37 Al0.10 )0.96B0.04]94Zr6 alloy and the local average elemental compositions determined using energy dispersive spectroscopy analysis, the amorphous phase with a composition of Fe47Nd38Al12Zra in the alloy can be observed. The bulk amorphous Fe47Nd38Al12Zr3 alloy is prepared by suction casting exhibiting good glassforming ability and soft magnetic behavior.  相似文献   

13.
李伟  韦世豪  段香梅 《中国物理 B》2014,23(2):27305-027305
An effective structural codoping approach is proposed to modify the photoelectrochemical (PEC) properties of anatase TiO2 by being doped with nonmetal (N or/and C) and transition metal (Re) elements. The electronic structures and for- mation energies of different doped systems are investigated using spin-polarized density functional theory. We find that (C, Re) doped TiO2, with a low formation energy and a large binding energy, reduces the band gap to a large extent, thus it could contribute to the significant enhancement of the photocatalytic activity in the visible-light region. It should be pointed out that, to be successful, the proper proportion of the dopants C and Re should be controlled, so that reasonable PEC properties can be achieved.  相似文献   

14.
Transmission and reflection of an electromagnetic pulse through a dielectric slab doped with the quantum dot molecules are investigated. It is shown that the transmission and reflection coefficients depend on the inter-dot tunneling effect and can be simply controlled by applying a gate voltage without any changing in the refractive index or thickness of the slab. Such simple controlling prepares an active beam splitter which can be used in all optical switching, optical limiting, and other optical systems.  相似文献   

15.
This paper reports that the SmCo6.8Zr0.2 nanocrystalline permanent magnets and SmCo6.8Zr0.2/a-(Fe,Co) nanocomposite permanent magnets are successfully produced by mechanical alloying and subsequently annealing at 700℃ for 10 minutes. The x-ray diffraction results show that the phase structure of SmCo6.8Zr0.2 nanocrystalline permanent magnets is composed of SmCo7 phase and SmCo6.8Zr0.2/a-(Fe,Co) nanocomposite permanent magnets is composed of SmCo7 and a-(Fe,Co) phases. The mechanism of magnetization reversal is mainly controlled by inhomogeneous domain wall pinning in SmCo6.8Zr0.2 and SmCo6.8Zr0.2/a-(Fe,Co) magnets. The inter-grain exchange interaction at low temperature is investigated, which shows that the inter-grain exchange interaction of SmCo6.8Zr0.2/a-(Fe,Co) magnets increases greatly by the decrease of the measured temperature. According to Amirr-H/Hcj, Amrev-H/Hcj and Xirr-H/Hcj curves at room temperature and 100 K, the changes of irreversible and reversible magnetization behaviours of SmCo6.8Zr0.2 and SmCo6.8Zr0.2/a-(Fe,Co) magnets with the decreasing temperature are analysed in detail. The magnetic viscosity and the activation volume of SmCo6.8Zr0.2 and SmCo6.8Zr0.2/a-(Fe,Co) magnets at different temperatures are also studied.  相似文献   

16.
In this study, the effects of doping by 3d (V, Mn, Fe, Ni) and 4f (Nd, Sm, Er) ions on dielectric and infrared properties of SrTiO3 (STO) single crystals are investigated. It is well known that doping of the SrTiO3 can change the dielectric properties of the STO from an insulator to an n-type semiconductor, and even to a metallic conductor. Dielectric and infrared (IR) properties of the undoped STO and doped STO single crystals are analyzed using dielectric spectroscopy (80 kHz-5 MHz), transmission (200 cm^-1-4000 cm^-1), and reflection spectroscopy (50 cm^-1-2000 cm^-1). It is found that doping by the 3d ions reduces the value of dielectric permittivity, but the trend of temperature dependence of the dielectric permittivity remains almost unchanged. On the other hand, dielectric spectroscopy measurements for samples doped by 4f ions show the anomalous behaviors of the dielectric permittivity at temperatures around the temperature of the structural phase transition. There are two fractures of temperature dependences of inverse dielectric permittivity εr^-1 (T). Transmittance spectroscopy measurements show that there are differences in the shape of the spectrum in the mid-IR region between the undoped STO and the one doped by 4f ions. The differences in the reflectance spectrum between the STO:Nd and STO are analyzed in detail.  相似文献   

17.
The local crystal structures and electronic structures of LiMxFe1-xPO4 (M = Co, Ni, Rh) are studied through first-principles calculations. The lattice constants and unit cell volumes are smaller for the Co and Ni doped materials than for pure LiFePO4, while larger than for the Rh doped material. The local structures around M atoms in the doped materials are studied in details. The total density of states (DOS) and atomic projected DOS (PDOS) are all calculated and analysed in detail. The results give a reasonable prediction to the improvement of electronic conductivity through Fe-site doping in LiFePO4 material.  相似文献   

18.
Using first principles calculations, we investigate the structural, optical, and electronic properties of LiNbO3 (LN) and M doped LN (M=Mg, Fe). The density of states are calculated to analyze the effect of doping Mg and Fe ions on the absorption spectra and electronic properties of LN. The results show an ultraviolet shift in the optical absorption edge of Mg-doped LN compared with that of intrinsic LN. On the contrary, the absorption edge of Fe-doped LN crystal reveals a red shift. The optical absorption spectra show an improved optical response in the visible range for Mg-doped LN, which significantly differs from that obtained for Fe-doped LN. The electronic excitations from the valence band to the conduction band of LN leads to an improved optical absorption response in the visible region as observed experimentally. The obvious changes of the doped LN crystal are found in some cases, which provide a helpful guide for preparing doped LN crystal.  相似文献   

19.
马良 《中国物理快报》2010,27(12):203-206
The effect of annealing on the microstructure and electrical characteristics of poly (3-hexylthiophene) (P3HT) films doped with very small amounts of the electron acceptor 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) is studied. X-ray diffraction and UV-vis spectrum studies show that unlike the pure P3HT film, the thermal treatment on the doped fihns under an Ar atmosphere can effectively enhance the crystalline order of P3HT films, as well as successfully facilitate the orientation of the polymer chains. This improvement is attributed to the electrostatic force between P3HT and F4-TCNQ molecules. This force induces the polymer chains to crystallize and orient during the annealing process. As a result, annealing significantly improves performance, especially for the Ion/Ioff ratio of the TFTs based on the doped P3HT films.  相似文献   

20.
<正>This paper studies the structural evolution of(AgCo)201 clusters with different Co concentrations under various temperature conditions by using molecular dynamics with the embedded atom method.The most stable position for Co atoms in the cluster is the subsurface layer at low temperature(lower than 200 K for the Ag200Co1 cluster).The position changes to the core layer with the increase of temperature,but there is an energy barrier in the middle layer. This makes the Ag-Co cluster form an Ag-Co-Ag three-shell onion-like configuration.When the temperature is high enough[higher than 800 K for(AgCo)201 clusters with 50%Co],Co atoms can obtain enough energy to overcome the energy barrier and the cluster forms an Ag-Co core-shell configuration.Amorphization for the onion-like and core-shell clusters is induced by the large lattice misfit at Ag-Co interfaces.The structural evolution in the Ag-Co cluster is related to the release of excess energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号